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Abstract

Among the extensive research dedicated to inverse problems for image restoration,
multi-frame-based methods have shown much promise. These methods aim to over-
come hardware limitations by combining shots taken in rapid succession, possibly
with various camera settings, to best exploit the imaging device’s capability. Deep
learning is another prominent research direction. Still, it faces limitations for real-
world image restoration: (1) artifacts arise from disparities between training images
(simulated) and real-world data (2) inferred images may feature false details which
represents a significant limitation for accurate scientific and medical applications
(3) the high computational costs that make challenging deployments on embedded
devices. Hybrid methods have gained significant attention for bridging the gap
between model-based approaches and machine learning for tackling inverse prob-
lems. By embedding the physical models into learning algorithms, it is possible to
achieve state-of-the-art performances on various image restoration tasks with com-
pact architectures, on par with state-of-the-art neural networks, with significantly
reduced computational cost and improved robustness on real-world images. The
present thesis is dedicated to an in-depth exploration of hybrid methods for solv-
ing inverse problems, with a specific focus on their pragmatic implementation in
burst photography for real-world applications. The first part of this thesis studies
hybrid methods for single-image restoration, providing some methodological tools
and some tricks for unrolled optimization. We propose a trainable non-local sparse
model for image restoration, leveraging a differentiable relaxation of the unrolled
group lasso solver. Taking it a step further, we propose a framework providing
differentiable relaxations of convex non-smooth optimization solvers for classic im-
age priors and some. These models demonstrate comparable performance to large
neural networks but with significantly fewer parameters, increased interpretabil-
ity, and faster training times, requiring less training data. The second part of the
thesis delves into combining hybrid methods with multi-frame image restoration
for super-resolution and HDR reconstruction applications. In this section, our pri-
mary focus is reconstructing scenes using real-world images rather than relying on
experiments conducted with synthetic data. The design of plug-and-play (PnP) al-
gorithms for burst photography is explored, with efforts directed toward practical
implementation and optimization for mobile devices. Throughout our investiga-
tion, we have consistently identified registration quality as a prominent bottleneck.
Finally, we propose a novel, dense multi-frame registration algorithm to tackle this
challenge effectively, enabling 3D scene reconstruction from image bursts with tiny
baselines.



Résumé

Cette thèse explore les méthodes hybrides pour les problèmes inverses, en se con-
centrant sur leur mise en œuvre pratique pour la photographie en rafale. Elle
est divisée en deux parties principales. La première partie est consacrée à l’étude
de méthodes hybrides pour des applications de restauration d’images, en four-
nissant plusieurs outils méthodologiques. Notamment, un nouveau problème in-
verse appris régularisé avec un prior parcimonieux non locale est proposé, en tirant
parti d’une relaxation différentiable d’un optimiseur du problème d’optimisation
du group lasso. Ensuite, un cadre fournissant des relaxations différentiables de
solveurs d’optimisation convexes non lisses pour des priors d’images est étudié.
Ces modèles présentent des performances comparables à celles de réseaux de neu-
rones état de l’art plus grands, mais avec beaucoup moins de paramètres, une
interprétabilité accrue, des temps d’entraı̂nement plus courts et une plus petite
quantité de données d’apprentissage. La deuxième partie de la thèse se penche
sur l’intégration de l’apprentissage automatique pour les techniques de restaura-
tion d’images multi-images, pour des applications sur des images réelles, pour
des problèmes comme la super-résolution et la reconstruction HDR. La conception
d’algorithmes plug-and-play pour la photographie en rafale est explorée, avec des
efforts dirigés vers la mise en œuvre pratique et l’optimisation de la mémoire pour
une implémentation sur appareil mobile. Au cours de notre étude, la qualité de
l’alignement des images a été identifié comme un élément bloquant. Pour con-
tourner ce problème, nous proposons un nouvel algorithme de recalage multi-
images dense, permettant également la reconstruction de scènes 3D à partir de
rafales d’images avec de petits déplacements.
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ma reconnaissance envers Dr. Chuan-Sheng Foo et Dr. Vijay Chandrasekhar, qui ont su
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les portes de l’équipe Thoth à Grenoble comme ingénieur de recherche pour explorer les
représentations parcimonieuses. Sa disponibilité infaillible pendant ces quatre années et
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bres des équipes Willow/Sierra que j’ai pu côtoyer : Gaspard, Louis, Yann L., Oumayma,
Guillaume, Fabian, Elliot, Antoine Y., Antoine B., Ricardo, Justin et tous les autres.

Je saisis l’occasion pour adresser toute ma reconnaissance à mes amis de longue date
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son soutien.



REMERCIEMENTS vi
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Résumé iv

Remerciements v

Acknowledgements vii

Table of Contents viii

1 Introduction 1
1.1 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Propagation of Light . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Pinhole Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.5 Geometrical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.6 Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.7 Optical Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.8 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Image Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Sensing Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Noise Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.3 Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.4 Image Sampling and Aliasing . . . . . . . . . . . . . . . . . . . 41
2.2.5 Sensing Colors and Human Perception . . . . . . . . . . . . . . 44

2.3 Image Formation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 Camera Imaging Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5 Algorithms for Image Restoration . . . . . . . . . . . . . . . . . . . . . 54

2.5.1 Inverse Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.2 Image Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.5 Plug and Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.6 Deep Unfoldings . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.7 Bilevel Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.6 Burst Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



TABLE OF CONTENTS ix

2.6.1 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.2 High Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6.3 Super-Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6.4 Low-Light Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6.5 Focus Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Differentiable Non-Local Sparse Model 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Preliminaries and Related Work . . . . . . . . . . . . . . . . . . . . . . 69
3.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Trainable Sparse Coding (without Self-Similarities) . . . . . . . 71
3.3.2 Differentiable Relaxation for Non-Local Sparse Priors . . . . . 73
3.3.3 Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.4 Extension to Blind Denoising and Parameter Sharing . . . . . . 75
3.3.5 Extension to Demosaicking . . . . . . . . . . . . . . . . . . . . . 75
3.3.6 Practical variants and implementation . . . . . . . . . . . . . . . 76

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Centralised Sparse Representation . . . . . . . . . . . . . . . . . . . . . 79
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.a Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.a.1 Implementation Details and Reproducibility . . . . . . . . . . . 82
3.a.2 Additional Quantitative Results and Ablation Studies . . . . . 83
3.a.3 Proof of Proposition . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.a.4 Additional Qualitative Results . . . . . . . . . . . . . . . . . . . 86
3.a.5 Parameters Visualization . . . . . . . . . . . . . . . . . . . . . . 86

4 A Framework for Designing Trainable Priors 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 A General Framework for Learning Optimization-Driven Layers . . . 92

4.3.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Application of our Framework to Inverse Problems . . . . . . . 92
4.3.3 Differentiability and End-to-end Training . . . . . . . . . . . . . 95
4.3.4 Tricks of the Trade for Unrolled Optimization . . . . . . . . . . 97

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.a Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.a.1 Discussion on Models and Priors . . . . . . . . . . . . . . . . . . 102
4.a.2 Implementation Details and Reproducibility . . . . . . . . . . . 103
4.a.3 Additional Quantitative Results . . . . . . . . . . . . . . . . . . 104
4.a.4 Additional Qualitative Results . . . . . . . . . . . . . . . . . . . 105

5 Super-Resolution from Raw Image Bursts 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1 Image Formation Model . . . . . . . . . . . . . . . . . . . . . . . 113
5.3.2 Inverse Problem and Optimization . . . . . . . . . . . . . . . . . 113
5.3.3 Unrolled Optimization and Backpropagation . . . . . . . . . . . 115
5.3.4 Implementation Details and Variants . . . . . . . . . . . . . . . 116

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



TABLE OF CONTENTS x

5.a Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.a.1 Comparison with burst denoising methods . . . . . . . . . . . . 122
5.a.2 Evaluation on RGB Images . . . . . . . . . . . . . . . . . . . . . 122

6 Joint HDR and Super-Resolution from Bracketed Raw Bursts 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 High Dynamic Range Imaging . . . . . . . . . . . . . . . . . . . 132
6.2.2 Super-Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2.3 Joint HDR Imaging and Super-Resolution . . . . . . . . . . . . 134

6.3 Image formation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.1 Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.2 Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.3 Noise and SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.4 Overall Image Formation Model . . . . . . . . . . . . . . . . . . 136

6.4 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.4.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . 138
6.4.2 Optimization Strategy . . . . . . . . . . . . . . . . . . . . . . . . 139
6.4.3 Learnable Architecture . . . . . . . . . . . . . . . . . . . . . . . . 140
6.4.4 Learning the Model Parameters θ . . . . . . . . . . . . . . . . . 141

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5.1 Joint SR and HDR on Raw Image Bursts . . . . . . . . . . . . . 143
6.5.2 Pure Super-Resolution . . . . . . . . . . . . . . . . . . . . . . . . 143
6.5.3 Pure HDR Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5.4 Multi-Exposure Registration . . . . . . . . . . . . . . . . . . . . 146
6.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.a Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.a.1 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.a.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . 155

7 Dense Image Registration and 3D Reconstruction from Bursts 157
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3.1 Image Formation Model . . . . . . . . . . . . . . . . . . . . . . . 160
7.3.2 Minimization Problem . . . . . . . . . . . . . . . . . . . . . . . . 160
7.3.3 Numerical Procedure . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3.4 Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.3.5 Scene Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.3.6 Coarse to Fine Approach . . . . . . . . . . . . . . . . . . . . . . 162
7.3.7 Usage in Downstream Tasks . . . . . . . . . . . . . . . . . . . . 163

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.4.1 Synthetic Burst Simulation. . . . . . . . . . . . . . . . . . . . . . 163
7.4.2 Evaluation on Synthetic Data . . . . . . . . . . . . . . . . . . . . 164
7.4.3 3D Reconstructions Quality on Synthetic and Real Bursts . . . 165
7.4.4 Low-Light Photography on Real Bursts . . . . . . . . . . . . . . 166
7.4.5 Super-Resolution on Real Bursts . . . . . . . . . . . . . . . . . . 167
7.4.6 Impact of a Good Depth Initialization . . . . . . . . . . . . . . . 168

7.a Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.a.1 Closed Form Jacobian for Gauss-Newton Step . . . . . . . . . . 168
7.a.2 Determinant Regularization . . . . . . . . . . . . . . . . . . . . . 169



TABLE OF CONTENTS xi

7.a.3 Plane Parametrization . . . . . . . . . . . . . . . . . . . . . . . . 170
7.a.4 Fixed Point Algorithm for Reverse Warpping . . . . . . . . . . 170
7.a.5 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . 171
7.a.6 Additional Visual Results . . . . . . . . . . . . . . . . . . . . . . 174

8 Conclusion, Industrialization, and Perspectives 179
8.1 Summary of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.2.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.2.2 Learned Inverse Problems . . . . . . . . . . . . . . . . . . . . . 181
8.2.3 Burst Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2.4 Multiframe registration . . . . . . . . . . . . . . . . . . . . . . . 182

8.3 Challenges of the Industrialization . . . . . . . . . . . . . . . . . . . . . 182
8.4 Example of Add-Ons to the Super-Resolution Algorithm . . . . . . . . 183

8.4.1 Hiearchical Lucas Kanade . . . . . . . . . . . . . . . . . . . . . . 183
8.4.2 Fast Gradient Approximation and Fusing Operators . . . . . . 184

8.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.5.1 Joint Optical Deconvolution and Super-Resolution . . . . . . . 186
8.5.2 Ray-Tracing Based Data Simulations . . . . . . . . . . . . . . . . 186
8.5.3 Differentiable Camera Model . . . . . . . . . . . . . . . . . . . . 187
8.5.4 Diffusion-Based Priors on Image and Formation Model . . . . 187
8.5.5 Implementation on GPU/DSP for Mobile Devices . . . . . . . . 187
8.5.6 Improved Multi-Frame Registration . . . . . . . . . . . . . . . . 187

Appendix 190

A Multi Frames Registration Algorithm for HDR Images 190

Bibliography 193



Chapter 1

Introduction

Despite their extreme miniaturization, smartphone cameras have led to remark-
able performances and have democratized access to photography. Nowadays, users
consider the camera module’s performance as a top factor when selecting a new
smartphone. In the medical field, high-fidelity miniaturized cameras play a crucial
role. In endoscopy, they allow exploration of confined anatomical regions -like the
gastrointestinal or urinary tract- leading to better diagnoses. They are also heavily
used for minimally invasive surgeries reducing bodily harm.

Image quality is a multifaceted concept. It encompasses various aspects such as
faithful details reconstruction, reproduction of human visual experience, and artis-
tic expression. In this thesis, we mainly consider the ability to reconstruct details
faithfully. But quantifying this capability, so simple in appearance, is a real chal-
lenge. The literature has widely acknowledged that relying solely on distortion
metrics to gauge disparities between the ground truth and captured signals doesn’t
consistently align with perceived image quality or the perceived amount of con-
veyed information. This discrepancy arises from several factors intricately tied to
the human visual system. Humans possess, for instance, a remarkable ability to
discern faint patterns in strong noise with no spatial correlation. Consequently,
quantitative evaluation is still an open question, and it should be acknowledged
that perceptual evaluations often dictate image rankings.

Accurate details reconstruction relates to at least three technical components of
imaging systems: resolution, noise, and dynamic range. Resolution is an abstract
concept. Here, we follow the standard definition of the optics literature, consid-
ering that it refers to the sensor’s capability to resolve two punctual light sources.
This can be objectified, for example, with the Rayleigh criterion. Contrast is also
frequently used and can be quantified using modulation transfer functions (MTFs).
Noise can be measured in signal-to-noise ratio. While dynamic range, characteriz-
ing the extent of measurements, can be measured in f-stops. The hardware of the
camera is optimized to enhance these metrics.

Cameras are made of two essential components: an optical system and a digital
sensor. The limitations of cameras can emerge from either of these components.
Sensor-limited devices suffer from undersampling resulting in aliasing due to large
pixel pitch and limited signal-to-noise ratio. On the other side of the spectrum,
optical-limited devices encounter lens aberrations producing various geometric dis-
tortions and affecting resolution. They also may be subject to the diffraction barrier,

1
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harming resolutions and contrast. Moreover, miniaturized cameras introduce ad-
ditional challenges, extending beyond just cost considerations. These constraints
include smaller apertures, reducing the amount of gathered light, as well as the
need for closer lens-to-sensor distances, resulting in significantly smaller pixel sizes.
Achieving satisfactory signal-to-noise ratios and dynamic ranges under these cir-
cumstances using current technologies becomes a real challenge.

Computational Methods for Image Restoration

Computational methods that enhance images through software gain particular
appeal as they prove effective for both budget-friendly and high-end cameras, es-
pecially when physical constraints impede further hardware advancements in com-
pact devices. In this thesis, we focused on several image restoration problems, in-
cluding denoising, demosaicking, super-resolution, and high-dynamic among oth-
ers. Such problems are often cast in the family of inverse problems, which consists
of inferring an underlying clean signal for a given set of observed noisy outcomes,
knowing the acquiring system’s response —generally, by solving an optimization
problem.

Among the vast body of work devoted to inverse problems for image restoration
in the literature, multi-frame based methods have shown much promise. Multiframe
methods aim to overcome hardware limitations by combining shots taken in rapid
succession. These shots can be taken with various camera settings such as different
exposures, apertures, focus planes, and, of course, a combination of all to exploit
best the capacities of the sensor on distinct portions of the signal. Views can be
slightly offset by taking advantage of the user’s involuntary hand tremors, or they
can be with the same viewpoint using a tripod for acquisition. Depending on the
applications, displacements may be necessary (super-resolution, 3D reconstruction).
For others, such as HDR or denoising, motions are generally unwanted.

Deep learning is, of course, another prominent research direction. However, in the
specific context of real-world image restoration, important limitations arise. (1) Us-
ing deep learning techniques gives rise to artifacts generally attributed to discrepan-
cies between the training images—gathered via camera simulations—and the actual
real-world data. (2) It is impossible to detect produced artifacts or false details in
the produced result. While images enhanced with plausible yet incorrect details,
i.e., hallucinations, may be acceptable in some scenarios, the accurate reconstruction
of patterns holds paramount importance in scientific and medical applications. (3)
The computational cost of running large neural networks on embedded devices is
generally prohibitive.

Hybrid methods, alternatively referred to as trainable algorithms, have gained sig-
nificant attention in research for bridging the gap between model-based approaches
and machine learning for tackling inverse problems. The core idea behind these
methods is to incorporate physical models into learning algorithms. It enables
trainable models on par with state-of-the-art neural networks, better stability on
real data, significantly smaller memory footprints, and computational costs. In the
thesis, we focus on two classes of methods belonging to that family of methods:

(1) Plug-and-Play (PnP) involves solving inverse problems with alternate opti-
mization, with one part dedicated to the minimization of the data-fitting term,
usually achieved with classical optimization, while the second part is handled by
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a neural network dedicated to solving a more straightforward denoising problem,
i.e., projecting current estimate candidate on the natural image manifold. With such
an approach, the burden on the neural network component is significantly reduced;
therefore, it is possible to compress model size significantly. However, the resulting
iterative algorithm no longer has any guarantees to solve an optimization problem.

(2) learned inverse problems (LIP) 1, involves fine-tuning hyperparameters of in-
verse problems for optimal reconstructions on a training set. Here the hyperparam-
eters include the parameters of the optimization function, such as the regularization
parameters, or else parameters controlling optimization, such as gradient steps or
the parameters affecting a preconditioner2. This concept was initially introduced to
accelerate the solution of the Lasso with a trainable ISTA algorithm called LISTA.
The training process generally leverages bilevel optimization techniques where one
optimization problem is nested within another.

1.1 Contributions of this Thesis

This thesis focuses on exploring hybrid methods and their practical implementation
in burst photography. The emphasis lies on the empirical aspect, aiming to develop
algorithms that can effectively process real-world data while utilizing minimal com-
putational resources. As far as possible, the limitations impacting the performance
of the algorithms in real cases are identified, and solutions are proposed to maintain
acceptable performance. The thesis is built in two main parts. The first part study
learned inverse problems and proposed some new methodological tools. The sec-
ond part focuses on the design of multi-frame methods leveraging hybrid methods.

Part I: Learned Inverse Problems

In the first part, we study hybrid methods for single-image restoration tasks with
synthetic degradations. That part focuses more on the methodological side: we
propose new tools to design LIP.

In chapters 3, we study LIP for inverse problems regularized with a non-local
sparse image prior and propose a differentiable relaxation of a group lasso solver
to this end. The model we obtained when trained on compact image datasets,
performs on par with state-of-the-art attention-based neural networks with 72x less
trainable parameters for demosaicking tasks on reference datasets.

In chapter 4, we propose different tools to differentiate through convex non-
smooth optimization solvers more systematically. And also presents several tips and
tricks for effective unrolled optimization based on empirical observations. Again
the proposed models have the advantage of being extremely compact, data-efficient,
more interpretable, and very fast to train while on par with the current state-of-the-
art for various image restoration problems.

Part II: Burst Photography

The second part of this thesis focuses on the application of hybrid methods to burst
photography for real-world scenarios.

In chapter 5, we study burst super-resolution on raw image bursts, leverag-
ing the PnP framework. Central efforts have been conducted on the experimen-
tal side, designing systems that worked for real-world images in computationally

1also called learned inverse solvers, or trainable priors, in this thesis
2Also sometimes referenced as learned optimization in the literature.
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constrained environments. Notably, (1) we addressed generalization issues by im-
proving the simulated raw data pipeline, and with a refined camera model (2) we
developed a deghosting method for handling instability issues arising from non-
rigid motion and misaligned frames (3) we improved registration algorithms for
our specific use case by proposing a hierarchical implementation of the Lucas-
Kanade algorithm. The hybrid approaches allow very compact neural networks,
less computationally demanding than concurrent attention-based neural networks
but achieving similar reconstruction quality with improved stability. We worked
on an efficient implementation to minimize memory footprint, allowing a first im-
plementation on mobile devices. That very first prototype ran on smartphones in
approximately 3 seconds, for a small image, using CPU resources.

Chapter 6 tackles two orthogonal problems: HDR, and super-resolution on raw
bursts with bracketed exposures. That setting is hard because one must register
with high-accuracy frames with heterogeneous content (varying SNRs and satu-
rations). Achieving accurate registration under such diverse conditions poses a
significant challenge. To face this technical challenge a differentiation of the Lu-
cas Kanade algorithm to perform registration on a filtered features map. We also
propose an accurate simulation of bracketed data

Throughout our investigation, we have consistently identified registration qual-
ity as a prominent bottleneck. To effectively tackle this challenge, our focus shifts
to Chapter 7, wherein we introduce an approach that performs dense image regis-
tration in the multi-frame setting. We directly optimize the depth and surface ori-
entation at every pixel in a reference image and the extrinsic parameters of all other
cameras relative to it. The optimization is carried out by minimizing photometric
reprojection errors computed via plane-induced homographies. Remarkably, our
method enables 3D reconstructions of scenes even when dealing with very small
baselines.

Furthermore, within Chapter A located in the appendix, we incorporate unpub-
lished research concerning a related issue, specifically, the multi-frame registration
for HDR images. This supplementary study enables the robust fitting of a global
transformation by utilizing a collection of pairwise affine transformations that have
been individually computed.

Industrialization

Concluding this thesis, we discuss the core limitations of the proposed algorithms
within Chapter 8. Subsequently, we provide a brief overview of the industrializa-
tion phase of the algorithms presented. Indeed, the algorithms introduced in this
thesis have led to the creation of a new startup, ”Enhance Lab3”, involving my re-
search advisors, aiming to provide software solutions for enhancing image quality
in various contexts, including but not limited to smartphones and scientific imag-
ing. I have been working on this project for the last two years. At the time of writing
this thesis, after some adventures and twists, Enhance Lab has finally succeeded in
its first fundraising and has concluded two proof of concept with major companies
in the field of smartphones and scientific imaging. Besides the multiple challenges
we faced, in order to navigate the transition from academic research to a robust
industrial product validating stringent benchmarks, we confronted a series of novel
technical challenges. We give an overview of these new challenges in Chapter 8.
These challenges compelled us to propose innovative technical solutions; some are
briefly mentioned in this concluding chapter. Finally, in conclusion, we present an

3https://enhancelab.fr/
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exploration of future research directions that we consider promising. Notably, we
highlight multiple avenues for enhancing and refining the proposed methods.

1.2 Outline of this Thesis

In the following, we present the structure of this dissertation and the articles upon
which it is based. All of them have been the result of collaborative work. For each
publication, the contributions of all the authors are listed.

• Chapter 2: Background. This chapter gives the image formation model used
in the other chapters and explains the main building blocks of imaging sys-
tems. It also gives an overview of the state of the art of image processing
algorithms.

The two next chapters focus on LIP for image restoration.

• Chapter 3: Differentiable Non-Local Sparse Model. This chapter is based
on the paper Fully Trainable and Interpretable Non-Local Sparse Models for Im-
age Restoration [1]. B. Lecouat, J. Ponce, J. Mairal, In ECCV 2020. Our
models are implemented in PyTorch, and our code can be found at https:
//github.com/bruno-31/groupsc. The initial idea of the main algorithm and
the experiments were proposed by the author and further developed with the
help of Dr. Mairal. All authors contributed to the writing.

• Chapter 4: A Framework for Designing Trainable Priors. This work is based
on the paper A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [2] B. Lecouat, J. Ponce, J. Mairal, In NeurIPS
2020. Our models are implemented in PyTorch, and our code can be found at
https://github.com/bruno-31/groupsc. The initial idea and the main algo-
rithms were designed by Dr. Mairal and the author. All authors contributed
equally to the writing.

We present in the next two chapters algorithms for burst photography.

• Chapter 5: Super-Resolution from Raw Image Bursts. This work is based on
Lucas Kanade Reloaded : End-to-End Super-Resolution from Raw Image Bursts [3]
B. Lecouat, J. Ponce, J. Mairal, In ICCV 2021. Visual results are available
at https://bruno-31.github.io/lkburst2/. The initial idea and the first
version of the code were developed by the author. Dr. Mairal and Prof. Ponce
helped to improve the method. Dr. Mairal helped collect real-world bursts.
All authors contributed equally to the writing.

• Chapter 6: Joint HDR and Super-Resolution from Bracketed Raw Bursts.
This work is based on High Dynamic Range and Super-Resolution From Raw Im-
age Bursts [4] B. Lecouat, T.Eboli, J. Ponce, J. Mairal, In SIGGRAPH 2022.
Initial ideas of the deghoster and differentiable LK were proposed and imple-
mented by the author. Dr. Eboli helped to study the HDR literature, point
to the right references, proofread the code, benchmarked the method, and
helped with many discussions to improve the method. The first draft of the
paper was, in large part, written by Dr. Eboli. All authors contributed to the
final writing. Dr. Eboli and the author worked on the oral presentation.

• Chapter 7: Dense Image Registration and 3D Reconstructions from Bursts.
We finally focus on multi-frame dense registration and 3D reconstruction.

 https://github.com/bruno-31/groupsc
 https://github.com/bruno-31/groupsc
 https://github.com/bruno-31/groupsc
https://bruno-31.github.io/lkburst2/


CHAPTER 1. INTRODUCTION 6

This work is based on Dense Image Registration, Camera Pose and Depth Estima-
tion from Bursts B. Lecouat*, Y. Dubois de Mont Marin* T. Bodrito*, J. Mairal,
J. Ponce. This paper is under review and has not yet been published on Arxiv.
The first ideas come from Dr. Ponce and the author. The first version of
the code was developed by Y. Dubois de Mont Marin and the author. T. Bo-
drito worked on another implementation in parallel and provided different
insights that improved the method. Y. Dubois de Mont Marin designed and
implemented the pose solver as well as the final structure solver used in the
paper. T. Bodrito focused on data simulation on Blender and on the experi-
mental section by running baselines with the author. Y. Dubois de Mont Marin
contributed in large part to the first draft of the paper. All authors contributed
to the writing of the final version.

• Chapter 8: Conclusion, Industrialization, and Perspectives. This chapter
summarizes the contributions of this thesis, describes the industrialization
phase of the burst super-resolution method introduced in this thesis, and
provides potential directions for future research. Improvements to the burst
super-resolution algorithm were developed by the author and discussed with
Prof. Ponce and Dr. Mairal. Most of the improvements of the burst super-
resolution algorithm were done while working on the Enhance Lab project.

• Chapter A: Multi frame alignment for HDR images. This brief additional
work proposes an alternative for multi-frame registration by robustly fitting
a global transformation given a set of pairwise parametric transformations
estimated pairwise. The initial idea was proposed by the author and further
refined with the help of Dr. Mairal and Prof. Ponce. Dr. Mairal developed
an improved version of the block coordinate descent solver and implemented
the code in C++.



Chapter 2

Background

Chapter abstract:
This chapter aims to provide an exploration of the inner workings of digital

cameras, focusing on proposing modeling tools that describe the image forma-
tion process and basic image processing steps. To accomplish this objective, we
begin by delving into the modeling of light propagation and the optical systems
utilized to form images on the camera’s sensor plane. This topic is addressed in
Section 2.1. Then, we review the general operating principle of digital imaging
sensors in Section 2.2. To further enhance our understanding of digital cam-
eras, we present a short review of the image signal processing (ISP) pipeline in
Section 2.4. This section explores the fundamental processing steps in convert-
ing raw measurements into photographs pleasing to the human eye. Finally,
in Sections 2.5,2.6, we review algorithms that can be used to improve the qual-
ity of photographs. We especially focus on inverse problems while Section 2.6
emphasizes burst photography techniques.
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2.5.1 Inverse Problems . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.2 Image Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.5.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.5 Plug and Play . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.6 Deep Unfoldings . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.7 Bilevel Optimization . . . . . . . . . . . . . . . . . . . . . . 59

2.6 Burst Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.1 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.2 High Dynamic Range . . . . . . . . . . . . . . . . . . . . . 64
2.6.3 Super-Resolution . . . . . . . . . . . . . . . . . . . . . . . . 65
2.6.4 Low-Light Imaging . . . . . . . . . . . . . . . . . . . . . . . 65
2.6.5 Focus Stacking . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.1 Optics

2.1.1 Light

Light is a phenomenon at the origin of visual perception for humans and is an
electromagnetic wave according to physics. The visible spectrum is the part of
the electromagnetic spectrum to which humans are sensitive [5]. By an adaptation
mechanism, like other species, it includes radiations between approximately 380
nm and 780 nm that have the most significant solar irradiance on Earth [5]. In
this Section, we attempt to answer from a physical perspective what is light? The
presentation of the modeling of light and its propagation in section 2.1.2 follows the
structure proposed in [6] and [7]. For a comprehensive understanding of this topic,
we highly recommend readers delve into the remarkable book [6] from Eugene
Hecht. Alternatively, if you prefer a shorter introduction, we suggest exploring the
first chapters of the excellent thesis [6] from Felix Heide. We highly recommend
exploring [5], an exceptional resource that provides comprehensive insights into
the origins of vision and the human eye.

Electromagnetic radiations. Electrodynamics explains light as an electromagnetic
wave. The fundamental Maxwell’s equations (1865) introduced by James Clerk
Maxwell govern the evolution of the electromagnetic field. These equations may
be combined to obtain the wave equation [6] and show that fluctuations in electro-
magnetic fields propagate at the speed of light c ≈ 3× 108m/s in a vacuum [6].
Electromagnetic waves, characterized by their wavelength λ in meters [m] , consist
of synchronized oscillating electric ~E in volts per meters [V/m], and magnetic fields
~B in Teslas [T] that can propagate without a medium [8]. These fields are orthogonal
to each other and the direction of propagation, forming a transverse wave. Electro-
magnetic radiation (EMR) is the energy emitted or absorbed by charged particles,
and transported by electromagnetic waves. Note that the energy carried by the EM
wave is continuous with this model. Treating light as an EM wave allows us to
model its propagation and many behaviors at a macroscopical level. We can predict
diffraction, interference for coherent light sources, refraction, reflection, scattering,
or transmission [6].
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Optical rays. Light is often modeled using the concept of optical rays, which is a
simplification of the EM model [6]. This is a fundamental tool of geometrical optics
that allows the simplified analysis of optical systems [8]. Even though light rays
do not have a physical reality, it is relevant to represent light with rays for physi-
cal systems where the typical dimension D of the system is much larger than the
wavelength [8] (D � λ): light rays do not account diffraction. Rays represent light
as oriented lines orthogonal to the EMR wavefront and, therefore, are colinear to
the Poyinting vector. See Figure 2.8 for an illustration. Light can be modeled with
light rays in a vacuum or in dense media such as glass or air. The rays in homo-
geneous media are straight but may be curved in a medium where the refractive
index changes [8]. More generally, at a macroscopic scale, the trajectory of rays is
governed by the Fermat principle that we will present in the next Section.

Wavefront

Rays

Figure 2.1: A ray serves as a simplified geometric representation of light; it is obtained
by choosing a curve perpendicular to the wavefronts that indicate the pathway of energy
transmission.

Wave-particle duality. The electromagnetic theory is insufficient in explaining
light thoroughly, particularly at the microscopic level. Indeed, it fails to explain
some observations. For instance, experiments showed that electrons are ejected
from metal surfaces only above a minimum frequency of incident radiations, while
no electrons are ejected below this threshold. The energy of the ejected electrons
solely depends on the light frequency and not on its intensity [7]. This contradicts
Maxwell’s theory, which predicts that the energy of light can take any continuous
value and depends on the amplitude of the electromagnetic wave and not its fre-
quency [6]. The continuous electromagnetic model also fails at explaining black
body radiations [9]. Planck and Einstein introduced the concept of quanta of en-
ergy to explain these observations. That approach quantizes energy; materials can
receive or emit electromagnetic energy only in specific amounts. Hence, light can
exhibit both particle and wave-like behavior. Generally, it is often convenient to
consider that light exhibits a particle-like behavior at emission or absorption when
interacting with matter and propagates like a wave [8]. By accurately characterizing
light as a dual wave-particle that displays both wave-like properties when propa-
gating through space and particle-like behavior during emission and absorption,
modern quantum mechanics resolve this conflict [9].

Coherence. Quantum mechanics describe light as a dual wave-particle, where
photons are treated as wave packets consisting of a superposition of planar
waves [9]. Due to the uncertainty principle [9], the position and speed of photons
cannot be determined precisely simultaneously. Consequently, light has a finite fre-
quency bandwidth ∆ν, which results in a finite length of the wave packet denoted
by ∆x. Hence, it takes a time ∆t for a photon to pass a point in space [8], and this
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time satisfies the relation
∆ν∆t ≈ 1

2π
. (2.1)

The coherence length, denoted by L = c∆t, refers to the maximum path difference at
which light can produce interference (we say that the phase relationship is main-
tained). A laser can have a coherence length of about 1m [8]. This explains why
natural light does not produce interference patterns most of the time. Usually, the
luminous intensity of two light beams can be added and produces no interference.
Interference is more noticeable with thin layers, such as an iridescent effect on the
surface of an oil stain or a pigeon’s wing, because the light path difference can be
very small in these situations.

Light emission. According to quantum theory, light is emitted when an atom
or molecule transitions from a higher to lower energy state [9]. This transition
causes the emission of a photon, a quantum of electromagnetic energy. The photon’s
energy is related to its wavelength or frequency by the equation

E = hν =
hc
λ

, (2.2)

where h is the Planck constant and ν is the frequency of the electromagnetic wave.
In most cases, the energy is emitted in a random direction. In some cases, such
as in lasers and light-emitting diodes (LEDs), the emission is directed in a specific
direction through stimulated emission [8]. While quantum mechanics offer a better
explanation of the microscopic behavior of light and its interaction with matter,
the electromagnetic model is valid at the macroscopic level [6]. Therefore, we will
mainly focus on the electromagnetic model in the next sections.

2.1.2 Propagation of Light

From the wave equation of the electrodynamic model, it follows that, in a vacuum,
light travels perpendicularly to the wavefront at the speed of light c. But then a
question arises: How does light interact with matter and move in a dense medium
such as air? And why does light sometimes travel slower than light speed when
photons can only exist at c [6]? These questions are, in fact, crucial for explaining
the propagation of light and the phenomena of transmission, reflection, and refrac-
tion. These processes look simple at a macroscopical level and can be explained
with simple models, but they are, in fact, the result of very complex interactions
happening at a microscopic scale [6]. When light encounters matter, countless pho-
tons interact with atoms tied together via electromagnetic interactions suspended in
the void. A tremendous amount of photons are absorbed and re-emitted by atoms
through a process called scattering. Transmission, reflection, and refraction can be
seen essentially as macroscopic manifestations of scattering [6]. We will first explain
these phenomena from a sub-microscopic perspective and connect it to the general
principles that explain light trajectory at a macroscopical level.

Scattering. For molecules and atoms much smaller than the wavelength, for in-
stance, in media like air, glass, or water, the interaction between light and matter is
described with Rayleigh scattering. In that setting, particles act as small oscillators
that can be excited by the oscillating electric field of light, causing them to move
at the same frequency. The particles, therefore, become small radiating dipoles
generating spherical waves at the same frequency (but with different phases). The
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Wavefront
Atoms

Figure 2.2: Scattering in a dense medium. A planar wave travels downward, encountering an
array of atoms. These interactions scatter the wave, resulting in numerous spherical waves
with altered phases but matching frequencies. These waves collectively interfere, generating
blended patterns that give rise to a secondary downward-traveling plane while exhibiting
negative interference in lateral orientations. The phase shift induces a perceived reduction
in wave velocity despite electromagnetic waves maintaining a propagation speed of c within
the medium. Figure inspired from [6].

closer to the resonance frequency of the molecule, the greater the proportion of
power scattered in all directions [6], and for molecules with a resonance far from
the radiation frequency, light will not interact.

The sky appears blue due to Rayleigh scattering. Light emitted from the sun
passes through atmospheric gas particles whose resonance is close to the UV. Con-
sequently, a large proportion of blue radiations are scattered, while red light is less
affected by this phenomenon. Therefore, light rays that have been scattered appear
reddish because most of the bluish light has been radiated laterally [6]. This is
especially true during sunrise and sunset when light travels through a larger layer
of the Earth’s atmosphere. Nevertheless, when light passes through a cloudy sky,
light is scattered through a different process called Mie scattering because the size
of the droplets is comparable to the wavelength. In this case, all parts of the light
spectrum are scattered equally, causing the clouds to appear white or gray instead
of blue [6].

Transmission. In a dense medium, molecules contribute a tremendous number of
scattered electromagnetic wavelets that all interfere together. In the case of propa-
gation through a dense medium, due to the geometry, the scattered wavelet mostly
cancels each other in all directions except forward, and the beam is sustained. See
Figure 2.2 for an illustration of this phenomenon. Refer to [6] for a detailed expla-
nation of this phenomenon. In general, the denser the substance through which
light advances and the more ordered the structure of the atom, the less lateral scat-
tering occurs: weak scattering with glass, almost no scattering with quartz, but of
course, imperfections aff of sorts such as impurities in a solid cause scattering [8].
On the opposite, randomly and widely spaced scatterers, such as in low-pressure
gases, produce wavelets that will mainly not interfere together due to the large path
difference except for the forward direction. As a consequence, a part of the radiant
energy is scattered laterally [6].

This explains why in glass or in water, the light is not scattered laterally, very
little energy is lost in lateral directions, and the propagation can be described with
light rays [8]. This is also why, at low altitudes, a dense atmosphere does not pro-
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duce Raleigh scattering (otherwise, a far object such as a mountain would appear
reddish to the eye). Most of the Rayleigh scattering process occurs at high altitudes
where the atmosphere is less dense.

In a dense medium, such as glass, while the propagation direction is the same as
in free space, the apparent phase velocity changes, even though photons only exist
at speed c [7]. The transmitted light wave moves through the dielectric at a slower
speed v with

v =
c
n

, (2.3)

where n is the refractive index [7]. This phenomenon arises because when the
atoms absorb and re-emit wavelets, it advances or retard the phase of the scat-
tered wave [6]. Interferences with the main wave delayed its apparent velocity
even though wavelets always travel at speed c. A complete explanation of this phe-
nomenon is well described in [6].

Reflection. Now, let us consider what is happening at a discontinuity between two
media with different refractive indices. When a beam of light strikes an interface,
some light is scattered forward, but there is always some light scattered backward:
this is reflection. In the case of planar wave radiation with an angle of incidence
θi on a smooth planar surface of a dielectric, a plane wave sweeps in, stimulating
atoms across the interface. These radiate and interfere together to give rise to a
reflected and a transmitted wave [7]. Due to the geometry of the plane and the
wavefront, the incident light beam angle equals the reflected light beam

θi = θr, (2.4)

and the incident ray (orthogonal to the wavefront) and the reflected ray are in the
same plane, see [6] for a more detailed explanation. Note that based on the wave
theory, it is possible to calculate the fraction of radiating energy that is reflected
and transmitted depending on the two refractive indices using the Fresnel equations
(1821).

In the case we have just described, when the surface is smooth, this process is
called specular reflection [10]. A mirror with a polished surface is a good example of
specular reflection. Moreover, reflection is enhanced as most of the radiating energy
will be reflected due to a metallic coating that suppresses wave transmission 1.

When the surface is rough, it will give a reflection in every direction, and this
is called diffuse reflection 2 [10]. One particular case commonly used in practice is a
Lambertian surface, which appears equally bright from all directions and is consid-
ered as a perfect diffuser [8]. Most of the objects are modeled as a combination of
specular and diffuse reflection [6, 10].

Refraction. Finally, having described the beam reflection at the interface, we now
consider the direction of the beam that is transmitted in the medium. When the
beam of light hits the object’s surface, atoms emit waves in the forward direction,
interfering with each other. But because the refractive index changes, this causes the
wavefront to change direction [7, 6]. That change of direction depends on the ratio

1light does not propagate through metal because the electric field cannot penetrate inside a metal.
Otherwise, this would move free electrons till it reaches an equilibrium where the electric field ~E would
be null.

2In reality, the phenomenon leading to diffuse reflection is slightly more complex as diffuse reflection
can occur with a smooth surface as well when light penetrates the material and then bounce back in
random directions [10].
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Figure 2.3: Light reflection according to Richard Feynman and QED theory. All paths are
explored by light, but only the shortest paths -highlighted in red on this figure- contribute
to the final result (as the majority of the paths interfering constructively are close to the
shortest path), while the other paths interfere negatively. Figure is inspired from Feynman’s
lecture [11]

between the refractive index of the two mediums. Macroscopically, that change of
direction is described by the Snell-Descarte relation

ni sin θi = nt sin θt. (2.5)

When light goes from a less dense medium like air into a denser medium like
water, it slows down and bends towards the normal of the plane separating the
two medium. When light passes from a denser medium to a less dense medium,
such as water to air, it speeds up and bends away from the normal. Refraction is
responsible for many optical phenomena, such as how lenses bend and focus light
to create images on the focal planes in cameras.

Propagation models. We described what happens at a sub-microscopical level,
using a wave model, to explain macroscopical observations. Historically, several
propagation models have been proposed to explain how light behaves and what
path it takes. All these principles effectively predict the propagation of light at a
macroscopical scale and have evolved throughout the centuries.

• Fermat principle (1662) describes the trajectory of light rays and states that
the path taken by a ray between two points is the path that can be traveled
in the least time. This general principle explains rectilinear propagation in
homogeneous media, refraction, and reflection at the interface between two
mediums [8].

• Huygens-Fresnel principle (1690) states that every point on a wavefront is itself
the source of spherical waves. And the emitted waves from different points
mutually interfere [6].

• Electrodynamic theory (1865). Electromagnetic theory gives a more complete
description than the two previous frameworks and can, for example, predict
the radiant flux transmitted, refracted, or reflected by a surface with Fresnel
equations [6].

• Quantum electrodynamic-QED (1948). The Feynman path integral formulation
replaces the classical notion of a single trajectory with an integral over an in-
finity of possible trajectories to compute a complex probability amplitude [11].
Within this framework, light does not take a single path. Instead, light takes
all of them at the same time, but only the shortest path contributes to the final
result while the other paths interfere negatively and hence do not contribute;
see Figure 2.3 for an illustration. So, the system’s behavior is once again co-
herent with the macroscopical observations and previous theories [11].
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We showed in this Section that closed-form relations can be obtained for simple
settings using the propagation models described above to predict the behavior of
light. But for a complex scene, modeling light propagation becomes quickly non-
tractable. One must instead rely on simulations to predict light behavior. Computer
graphics covers such simulations [12]. A quick overview of these techniques will be
discussed in Section 2.1.3.

2.1.3 Photometry

Photometry is the science that studies light measurement. The concepts introduced
in this Section will help us understand the basics of ray tracing, numerical simula-
tions, and how cameras gather light to form images.

First, we introduce four essential quantities that quantitatively describe light at
a macroscopical level: flux, intensity, irradiance, and radiance. We then highlight
several crucial light properties and introduce the rendering equation. We refer the
reader to [13] for an interactive presentation that helps to grasp these concepts
better.

Radiant flux. The radiant energy, denoted by the symbol Q, is the energy carried
by EM radiations and is measured in joules [J]. The radiant flux

Φ =
dQ
dt

in Watts [W], (2.6)

is the radiating energy emitted, reflected, transmitted, or received per unit of time.
Note that these radiometric quantities can be characterized by their spectral power
distribution: Φ(λ) is the radiated power spectrum [14]. It is a function of wave-
length λ, which describes the amount of power at each wavelength. For the sake
of simplicity, we will focus on monochromatic radiations in this Section. We will
consider the radiated power spectrum in Section 2.2.5 devoted to colorimetry.

Figure 2.4: Solid angle is the ratio between the surface of a cone (non-necessarily circular)
intercepted by a sphere centered at the origin of the cone and the square of the radius of that
sphere.

Solid angle. Solid angle, in steradian [sr], generalizes angles in 3 dimensions. It
measures the amount of the field of view from some point that a given object covers
(which is how large the object appears to an observer looking from that point). This
is a useful tool for photometry. Solid angle is the ratio between the surface of a
cone (non-necessarily circular) intercepted by a sphere centered at the origin of the
cone and the square of the radius of that sphere; see Figure 2.4 for an illustration.
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For instance, the solid angle Ω subtended by a hemisphere is 2π. More formally, it
is defined as

Ω =
S
r2 in [sr], (2.7)

where r is the radius of the considered sphere and S is the intercepted spherical
surface area. For a an infinitesimal surface dA the elementary solid angle dω sub-
tended from a point at a distance r is:

dω =
dA′

r2 =
dA cos θ

r2 , (2.8)

where θ is the angle between the surface normal and the direction vector, from the
point to the surface, dA′ is the foreshortened area [10] as shown in Figure 2.5.

Figure 2.5: Infinitesimal solid angle.

Radiant intensity. The radiant intensity characterizes the amount of light radia-
tion emitted from a source. It is defined as the power per unit solid angle emitted
by a light source

J =
dφ

dω
in [W.sr−1], (2.9)

where dφ is the infinitesimal radiant flux, dω is the solid angle. Note that radiant
intensity can also be defined as the radiant flux reflected, or received by a surface.
When computing the radiant intensity emitted by a source, dω represents the solid
angle into which the light is emitted, whereas when determining the received radi-
ance, dω corresponds to the solid angle subtended by the source as observed from
the perspective of the detector.

Irradiance. Irradiance characterizes the radiant flux falling on a surface. This is a
scalar-valued function that measures the amount of radiated power incident on a
surface per unit area. It is defined for an elementary surface area dA at position x
of normal n as

E(x, n) =
dφ

dA
in [W.m−2], (2.10)

where dφ is the radiant flux received by the elementary surface area.

Inverse square law. Assuming light is emitting a flux Φ in a uniform angular
distribution. Using the formula of the area of a sphere of radius r, we have E =
Φ/4πr2. Irradiance decreases in ∼ 1/r2. The furthest from the source, the less
power received per unit area. Note that this formula holds for a punctual light
source but is not valid when the source cannot be considered as punctual.
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Radiance. The radiance is the radiant flux emitted, reflected, or received by a
given surface per unit solid angle per unit projected area. Less formally, it quantifies
the light power traveling along a ray. Radiance is a scalar-valued function that is
defined at a point x for a direction r as

L(x, r) =
dφ

(dA cos θ)dω
in [W.m−2.sr−1], (2.11)

where dφ is the radiant flux emitted, reflected, dω is the solid angle3, and dA cos θ
is the projected area depending on θ, the angle defined between the normal and the
ray. Figure 2.6 illustrates these parameters.

Figure 2.6: Parameters for defining the radiance. Radiance is the power emitted from a unit
surface area dA in a set of directions dω or the power incident on a unit surface dA′ from
a set of directions dω′. Note that in free space, these two radiances are equal in energy
conservation, as we will discuss later.

Radiance integrals. Knowing the radiance distribution through space, we can
use it to calculate the irradiance received for an infinitesimal surface patch, defined
by its position in space x and its normal n. The irradiance radiated to the surface is
then the following integral [12]

E(x, n) =
∫

Ω
Li(x, ri)| cos θ|dri (2.12)

=
∫ 2π

0

∫ π
2

0
Li(x, θ, φ) cos θ sin θdθdφ. (2.13)

where Li is the incident radiance, θ is the measured angle between ω and the surface
normal n. Here,the | cos θ| term is due to the definition of radiance. Note that
irradiance is usually computed over the hemisphere of directions. We also wrote
in equation 2.13 the integral over spherical coordinates because it is often more
convenient to integrate over spherical coordinates instead of solid angle [12]. For
integral over spherical (θ, φ)coordinates, we use the fact that

dri = sin θdθdφ. (2.14)

Radiance properties. An essential property of radiance is that it is constant
along a light ray in free space. This can be shown easily [10]: given two surfaces
along a ray, as illustrated in Figure 2.8, we can write the emitted and received ra-
diant power by two infinitesimal patch surfaces along a ray as dφ1 = L(x1)dA1dω1

3Here, dω denotes the solid angle into which the light is emitted or the solid angle subtended by
the receptor as viewed from the receiving surface depending on the context. Refering to Figure 2.6, the
transmitted surface radiance is defined as dφ/(dA′ cos θ′)dω′
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Figure 2.7: Irradiance at a point x is given by the integral over the hemisphere of radiance
multiplied by the cosine of the incident direction angle θ.

and dφ2 = L(x2)dA2dω2. Here,φ1 is the radiant power emitted from dA1 to x2,
and φ2 is the radiant power received by dA2 from x1. Since by conservation of
energy, the radiance emitted by a source is the same as that received by a detector
observing it we have dφ1 = dφ2. Furthermore, we can compute the solid angle
subtended for each surface element as dω1 = dA2/r2 and dω2 = dA1/r2. Hence
we have dω1dA1 = dA1dA2/r2 = dω1dA1. Therefore we have L(x1) = L(x2). We
have shown that radiance is constant along a ray.

Figure 2.8: Radiance along a ray.

Lambert’s cosine law. As mentioned in Section 2.1.2, an ideal Lambertian diffus-
ing surface has equal apparent brightness regardless of the viewing angle. For a
small surface relative to the observation distance, it obeys Lambert’s cosine law that
states that the radiant intensity J is proportional to the cosine of the angle θ between
the receptor’s direction and the surface normal [10]

J = J0 · cos θ. (2.15)

Here, the cos θ factor enforces a constant radiant flux per solid angle (i.e., radiant
intensity) independent of the viewing angle. Figure 2.9 illustrates that principle.

Note that a Lambertian surface appears equally bright from all angles when il-
luminated by a light source. However, note that the amount of light energy the
surface reflects depends on the angle between the surface and the light source be-
cause of the same cosine law. When the illuminated surface faces the light source
directly, it reflects the most light energy, resulting in maximum brightness. As the
angle between the surface and the light source increases, the amount of reflected
light energy decreases, causing a decrease in brightness. This phenomenon can be
observed with a sheet of paper, often modeled as a first approximation by a Lam-
bertian diffuser. The paper appears equally bright by moving around it; however,
brightness varies if the angle of the paper relative to the light source changes [10].

Lambertian diffuser reflected radiance. Note that Lambertian surfaces exhibit
uniform radiance regardless of the viewing angle. The radiance remains constant as



CHAPTER 2. BACKGROUND 18

Figure 2.9: Lambert’s cosine law: for the same solid angle (assuming here a far observer),
a larger portion of the surface is visible for a smaller angle θ. The cos θ factor enforces a
constant radiated intensity (i.e., radiant flux per solid angle) independent of the viewing
angle.

although the radiant power emitted from a particular area element is diminished
by the cosine of the emission angle, the solid angle that the visible surface occupies
is also decreased by the same factor. This constant ratio preserves the radiance [12].
This concept is depicted in Figure 2.10.

Figure 2.10: Diagram of Lambertian diffuse reflection with different units. The red arrow
shows incident radiance. Left: The reflected radiance is uniform in all directions because its
variation with the viewing angle cancels that of the intensity. Right: The black arrows show
reflected radiant intensity J in each direction.

Radiance field. The radiance field, also called the plenoptic function, is a useful
concept in computational photography and computer graphics. It describes the
amount of light that passes through every point in a given direction for a portion
of space. For example, views of a scene can be synthesized by sampling that func-
tion. In the general case, the radiance field P(x, y, z, θ, φ) is a real-valued function
P : R5 −→ R, of five variables. Three spatial coordinates x, y, z, and two angular co-
ordinates θ, φ. We can add two more variables: time t to model the time variations
and the wavelength λ to characterize color.

As we saw earlier, radiance along a ray remains constant if there are no blockers.
Because the radiance along a ray is constant, the redundant information is one
dimension. Therfore the radiance field can be represented with a four-dimensional
function. The set of rays in a 4D radiance field can be parameterized in different
ways. The two-plane parameterization L(u, v, s, t) being the most common; see
Figure 2.11 for an illustration. Refer to [15] for full coverage of this topic.

Reflectance. As we saw in the previous Section 2.1.2, the reflection of a surface
is, in general, a combination of diffuse and specular reflection. The bidirectional
reflectance distribution function (BRDF) is a standard tool to characterize how light
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Figure 2.11: Radiance field represented with the two planes parameterization.

is reflected from a surface [12]. It is a positive function with

fr(x, ri, rr) =
dLr(rr)

dEi(ri)
=

dLr(rr)

Li(ri) cos(θ)dri
. (2.16)

The BRDF takes the incoming and outgoing light rays’ directions ri and rr and
returns the ratio of the reflected radiance to the irradiance incident on the surface
from direction ri. Note that each direction r can be parametrized with elevation
azimuth angles (θ, φ).

Rendering equation. Having defined the BRDF, we have enough tools in hand to
introduce the rendering equation. The rendering equation is an integral equation
-based on the conservation of energy- to evaluate radiance emitted from a point x.
This radiance is calculated as the sum of the emitted and reflected radiance. The
full equation is the following

Lo(x, ro) = Le(x, ro) + Lr(x, ro) (2.17)

= Le(x, ro) +
∫

Ω
fr(x, ri, ro)Li(x, ri)| cos θ|dri. (2.18)

This equation states that the outgoing radiance Lo at a specific position and direc-
tion equals the sum of the emitted light Le by the surface and the total reflected light
Lr. The reflected light is computed as the integral of the incoming light Li from all
directions Ω, multiplied by the surface reflection (characterized by the BRDF intro-
duced earlier) and cosine of the incident angle due to the radiance definition [12].
Note that again for simplicity, we discarded the variables λ and t, assuming we con-
sider static scenes and monochromatic radiations4. That equation is used in com-
puter graphics to simulate the propagation of light on complex scenes. Although
the equation is very general, it does not capture all aspects of light propagation,
such as interferences, polarization, transmission, etc.

2.1.4 Pinhole Camera

Pinhole. The first device we introduce to measure light is the pinhole camera. It is
a simple type of camera that is made without a lens. The basic design of a pinhole
camera is a light-tight box with a small hole (the pinhole) on one side and on the
other a light-sensitive material (such as film or a digital sensor)[15] as illustrated
in Figure 2.12. Assume a scene is illuminated with a light source, which could be
the sun or neon light; each point of the scene emits light to the imaging device.
When the camera’s shutter is opened, light enters through the pinhole and forms

4The full equation considers the spectral quantities indexed by time L(x, w, λ, t) and fr(x, ri , ro , λ, t).



CHAPTER 2. BACKGROUND 20

an inverted image on the opposite side of the box. A pinhole camera samples the
light field through the (θ, φ) coordinates at a particular location (x, y). That model
is not realistic for a real camera as a real camera needs more light and, hence, a
larger aperture to form images with short exposure times. But it still has important
interest for its practicality. It also turns out that primitive eyes were pinholes similar
to the pinholes we have described [5].

Figure 2.12: A pinhole camera measures radiance for rays with different directions passing
through its pinhole.

image plane

Figure 2.13: Relation between Image Irradiance E and Scene Radiance L for a finite aperture
camera.

Measuring radiance. We show how radiance emitted from a scene is related to
the irradiance collected on the image plane of the camera. Let us assume that
an infinitesimal patch of surface dAs is radiating light toward a camera of finite
aperture d5, as shown in Figure 2.13. The radiant flux received by the camera is
fully projected onto the image patch dAi, assuming an infinitesimal aperture or
that the camera is equipped with a lens. A fundamental property relates that for a
pinhole camera with a finite aperture, the radiance of the ray is proportional to the
irradiance on the image plane at the location of the projected ray [10] according to
the relation

E(u, λ, t) = L(x, ro, λ, t)
π

4

(
d
f

)2
cos4 α. (2.19)

Here, the ray of direction r0 from the object to the image plane and the optical axis
of the camera form an angle α. See [10] for a full demonstration. This equation tells
us that the irradiance that is measured by the sensor is directly proportional to the
radiance of the scene. Therefore, cameras acquire a radiance map of the scene. We
will cover in Section 2.2 how the irradiance is then further converted to an electrical
signal and then digital numbers.

5Aperture is often measured in f-stops with N = f /d
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Depth and brightness. Observe that the distance of the object to the camera
does not appear in equation 2.19. Even if counterintuitive, it suggests that the
image brightness of an object in the image plane does not vary with its distance
to the receptor. This is because as the light source moves away, the total power
radiated by each point from the object reaching the camera is divided by the square
of a distance. However, simultaneously, the amount of visible surface sustained for
the same solid angle (or that occupied the same field of view) increases by a square
of the distance. Finally, these two effects cancel each other out perfectly, and the
perceived brightness remains constant [10]. Figure 2.14 illustrates this phenomenon.
This is consistent with observations: the apparent brightness of objects does not
decrease when the object gets further away.

Figure 2.14: The apparent brightness of an object is not dependent on its depth to the ob-
server. As the object moves away, the power radiated by each point of the object reaching the
receptor is divided by the square of the distance. However, simultaneously, the amount of
visible surface sustained for the same solid angle increases by a square of the distance.

Natural vignetting. The equation 2.19 shows us that image brightness falls off
the image center as cos4 α. We refer to this effect as natural vignetting as opposed to
the vignetting effect that occurs due to optical systems (refer to Section 2.1.7). Note
that for a small field of views, the effect of cos4 α is small [10].

2.1.5 Geometrical Model

We show in Section 2.1.4 that a pinhole measures the irradiance of the projected
image formed on the camera’s image plane. In this Section, we present the pinhole
camera model -also known as linear projection- from a geometric perspective. We
study the relationship between the position of a point in 3D and the coordinates
of its projection on the two-dimensional image plane. We finally highlight several
interesting effects in photography induced by this model.

Linear perspective. We assume a world coordinate frame. In this coordinate frame
lies our camera with its own coordinate frame, with the z axis being aligned with the
camera’s optical axis and the origin being the camera center. The relation between
a point in the camera coordinate frame xc to its corresponding projection pixel
coordinates u in the image plane is

u = π(Kxc). (2.20)

Where K is the upper triangular intrinsic matrix

K =

 fp 0 ox
0 fp oy
0 0 1

 , (2.21)
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Figure 2.15: Pinhole camera model.

which is composed of the internal parameters of the camera. For a very rudimen-
tary model, we consider the parameters fp, where fp = m f . Where m is the pixel
density in x and y directions in pixels/m, assuming square pixels. And f is the
distance of the image plane to the pinhole in meters. (ox, oy) is the coordinate of the
optical center of the camera in the image plane in pixels. Finally, the perspective
projection operator of x =

[
x, y, z

]> is written π(x) with the relation

π(x) =
[

x/z
y/z

]
. (2.22)

Now, suppose the position and orientation of the camera are known in the world
frame. In that case, we can give a point in the world coordinate xw and find its
coordinates in the camera coordinate frame using the extrinsic matrix [R|t]. We then
have xc = Rxω + t. In summary, the projection u in the image of the point xw can
be found with the formula

u = π
(

K
[
Rxω + t

])
. (2.23)

More elaborate models can include non-linear deformations induced by the cam-
era’s optic, such as tangential and radial polynomial deformation models. We will
cover lens aberrations in Section (2.1.6).

Perspective projection effects. This model, yet simplistic, has several interesting
properties. First, projections of parallel lines in 3D stay parallel in 2D [16]. Second,
the magnification factor -which is the ratio between the real object size and the size
of its corresponding object formed on the image plane m is given by the formula [16]

|m| =
∣∣∣∣ di
d0

∣∣∣∣ = ∣∣∣∣ f
z0

∣∣∣∣ . (2.24)

Where f is the focal length in meters, z0 is the distance of the point to the camera.
This can be derived easily derived with the Intercept theorem [16]. This depen-
dence on the magnification and the object distance can introduce some well-known
distortion effects among photographers. At large focal lengths (telephoto lenses), or
when the scene is very far from the observer, the light rays are parallel, and the ob-
ject looks flat. On the other hand, when the focal length is small (wide-angle lenses)
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or if the distance variations are significant, the object can look deformed [16]. As
there are disparities in distance to the camera relative to the focal length, it brings
significant differences in magnification across the image. This effect is depicted in
Figure 2.16.

Field of view and focal length. The field of view is related to the focal length and
the size of the image sensor according to the relation

α = 2 · arctan
(

h
2 f

)
, (2.25)

where α is the field of view angle, h is the sensor size in meters, and f is the focal
length in meters. We can see that decreasing the distance of the sensor to the optical
center decreases the field of view. This imposes a burden on small camera devices:
to keep the standard field of view, the sensor must be chosen smaller (this may alter
the sensor’s performance due to smaller pixels).

Figure 2.16: Comparison of images taken with different focal lengths. Left: Long focal
length produces flatter object representation. Right: Short focal length causes distortion in
the object’s appearance. Image credit: Wikipedia.

Beyond linear perspective. The linear perspective was discovered in the fifteenth
century by artists and architects. It is a straightforward technique for representing
three-dimensional space on a two-dimensional plane and forms the basis of many
imaging technologies like cameras and computer graphics engines [10]. However,
studies have shown that it may fail to reproduce visual experience: artists rarely
use it [17]. Alternatively, nonlinear methods have been propose to capture subjective
visual experiences more effectively. Promising research directions adapt perspective
to the content as it is done for the human eye [18, 19], just like tone mappers adapt
contrast locally to the image content [20]. Refer to [21] for an introduction to this
topic.

2.1.6 Lenses

Pinhole cameras require small apertures to form sufficiently sharp images. But
small apertures limit the amount of light collected [6, 10]. Pinhole cameras, there-
fore, require long exposure times to capture images [10]. Lens cameras alleviate this
problem by leveraging lenses to accumulate more light. To collect more light, lenses
in cameras essentially ”bend” the rays coming from a diffuser and focus them into
one point in the image plane [6]. For this reason, dust on the lens of a camera does
not deteriorate the image’s quality, as it occludes only fractions of the rays gathered
to form a point on the image plane. In this chapter, we explain the working princi-
ple of lenses. We then cover the thin lens model, a simple yet convenient model to
understand lenses. We will then see that the advantages offered by lenses come at
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the expense of defocus and optical imperfections known as lens aberrations, which
we briefly cover at the end of the chapter.
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Figure 2.17: Left: A diffuser generates (spheric) waves, the optical reshape the wavefront
so that they converge to P. Right: Surface of a lens with a hyperbolic interface between air
and glass. The parallel rays from a planar wave converge to the focal point. The hyperbola
is such that the optical path (i.e., taking into account slower speed in materials with large
refractive indexes) from D to A to F is the same no matter where D is.

Lens surface equation. Lenses are typically made of glass with a well-chosen
shape. When a point source diffuser is placed on an object’s surface and is posi-
tioned far from the optical system with the sensor beneath the optics, the spherical
waves emitted from the diffuser become nearly planar. Lenses are used to reshape
this beam of waves, causing the wavefronts to converge at a single focal point F on
the image plane (see Figure 2.17). To ensure constructive interference of all incom-
ing waves at this point, the total optical path length through the two mediums must
be the same. This imposes that

n1DA + n2 AF = const, (2.26)

with n1 and n2 being the refractive index of air and glass, respectively. By dividing
the equation by n1, we get the equation of a hyperbola [6, 8] of eccentricity e given by
n2/n1 > 1. The greater the eccentricity, the flatter the hyperbola. So, the larger the
difference in the refractive index, the less curved the lens. With a similar approach,
we can show that for a mirror, the optimal shape is a parabola with eccentricity
e = 1 as the refractive index does not change. Nevertheless, even though aspherical
lenses are sometimes used in optical systems, most of the lenses have a spherical
shape as it is way easier to design spherical lenses [6, 7]. Refer to [6] for more details
regarding lens shapes.

Thin lens model. The thin lens model is a simple yet widely used model for
lenses. The model consists of a spherical refracting surface with negligible thick-
ness [8] and assumes the parallaxial assumption. The parallaxial assumption states
that rays make a small angle θ to the optical axis and lie close to the axis. It
allows the first-order approximation of the trigonometric function [22] such as
sin(x) ≈ x, cos(x) ≈ 1. With these approximations, we can derive with basic ge-
ometry the law governing image formation through a lens, known as the thin lens
law

1
s
+

1
s′

=
1
f

. (2.27)

Here s is the object distance, s′ is the image distance, and f is the focal length of
the lens as illustrated in Figure 2.18. The so-called Lens maker equation can also
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image plane
equifocal plane

scene

Figure 2.18: The figure illustrates the thin lens model, where s denotes the object distance to
the lens, s′ represents the image distance to the lens, and f represents the focal length. The
sizes of the object and image are denoted by h1 and h2, respectively.

be easily obtained. It gives the relation between the focal length of a lens to the
refractive index n of its material and the radii of curvature of its two surfaces R

f =
R

2(n− 1)
. (2.28)

The ability of the lens to bend the rays is larger with large radii and with highly
refractive glasses [8]. A consequence of the thin lens model is that the surface
defining the corresponding set of perfectly focused points is a plane parallel to
the sensor plane that we call the equifocal plane [10]. If the thickness of a lens is
significantly smaller than the radii of curvature of its surfaces, it can be regarded
as a thin lens [8]. By neglecting the optical effects resulting from the thickness of
lenses, the thin lens approximation simplifies ray tracing calculations. Lenses with
noticeable thickness are sometimes referred to as thick lenses. The thick lens model
is presented in detail in [8].

Confusion circle
Depth of Field

Image plane

Figure 2.19: o′ and o′′ are the farthest and nearest distances defocused point for which the
confusion circle is maximum, i.e., the formed image point is considered neat.

Defocus. Based on the thin lens models, given an optical system with a lens and
an image plane at a distance i of the lens, only one plane at a distance o in front
of the lens will be in focus. A point lying outside the image plane at a distance o′

will form a blurry contribution to the image plane. If the point is closer to the lens
than the focus plane, the light from the point will focus on a point behind the image
plane. Following [16] the blur circle diameter b is

b =
f 2

N
|o− o′|

o′(o− f )
. (2.29)

Here, N is the f-number, which is given by N = f /d, where d is the diameter of
the entrance pupil (aperture) of the camera. To focus an image plane, the system
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must move the image plane or the lens position to. the image plane. Therefore, the
increase of aperture offered by lenses comes at the cost of a defocus effect -producing
sharp images only for some portion of space in front of the camera.

Depth of field. DoF is the range of object distances over which the image is suffi-
ciently well focused, i.e., the range over which blur b is less than pixel size. This is
illustrated in Figure 2.19 The following simple formula can approximate the depth
of field of a camera

DoF ≈ 2u2Nc
f 2 , (2.30)

where c is the circle of confusion, f the focal length, N the f-number and distance
to subject u. Note that this is an approximation of the exact depth of field formula,
which can be found in [10]. From this equation, we see that three parameters
impact the depth of field: aperture, focal length, and distance of the plane in focus.
We summarize in the table below their impact on the depth of field.

Depth of field Aperture Focal Distance
Increased (+) Small Large Far
Reduced (-) Large Small Near

2.1.7 Optical Limitations

In practice, real optical systems exhibit deviations from the ideal models discussed
in the previous Section, primarily attributed to imperfections in the manufacturing
process. This Section will explore the key limitations of optical systems used in
cameras.

2.1.7.1 Diffraction

Optical systems have finite apertures, therefore a diffraction phenomenon will ap-
pear if the diameter D of the aperture is not much larger than the wavelength
(D ≈ λ) [6]. The light wave incoming through the aperture will be diffracted. With
the hypothesis that the aperture is circular, a point does not focus on a single point
but on a spread-out symmetric Airy disk, which can be derived analytically ex-
pressed with the Bessel function [8]. Diffraction is often considered the ultimate
limit of an optical system in terms of the resolution of a finite-size imaging sys-
tem. The theoretical resolution limit can be defined using the Sparrow or Rayleigh
criterion. The latter states that for two closely placed punctual sources to be re-
solved, the central maxima of one’s PSF should lie precisely at the first minima of
the second one’s PSF. If the distance is larger, the two points are resolved while
they are considered as not resolved if the distance is smaller. This translates into
the equation

θ ≈ 1.22
λ

D
. (2.31)

where θ is the angular resolution (in radians), λ is the light’s wavelength (m), and
D (m) is the diameter of the lens’ aperture. Factor 1.22 is derived from calculating
the position of the first dark circular area of the diffraction pattern.
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2.1.7.2 Lens Aberrations

The thin lens model serves as a first-order approximation to the behavior of real
lenses. However, the real lens deviates from this model. These deviations from the
thin lens model are called aberrations. Modern optical systems are always made of
multiple lenses in order to correct these aberrations [8]. We present below the main
type of aberration for lenses [7, 22].

Seidel aberrations. Seidel aberrations encompass a set of common lens aberra-
tions that may occur in optical systems, leading to an inaccurate focusing of rays
on the sensor plane [22, 6]. These aberrations can be accounted for by employing
a third-order approximation of optics[22](whereas thin lens assumes a first-order
approximation), which involves adding an extra Taylor series term to approximate
trigonometric functions to obtain sin(x) ≈ x − (1/3!)x3. The five types of Seidel
aberrations are listed below. For further details on this topic, refer to [7, 22, 23].

• Spherical aberration. This distortion occurs when light rays passing through
the edges of a lens focus at different points than those passing through the
lens center, as shown in Figure 2.34, resulting in a blurred image [6]. This is
due to the fact that a spherical lens is not the optimal shape for focusing rays,
as shown in Section 2.1.6. This causes blurring and reduces the overall image
sharpness.

• Coma. Off-axis points appear comet-shaped due to this type of distortion
with large apertures.

• Astigmatism. Astigmatism results from differences in the focal lengths of a
lens or mirror in different meridians (perpendicular planes). Instead of con-
verging to a single focal point, light rays focus at different distances along two
perpendicular axes. This leads to stretched or elongated images, particularly
when dealing with high-contrast objects.

• Field curvature. Field curvature causes the image plane to be curved rather
than flat. When a flat object is captured, portions of the image may appear
out of focus or blurry because they are not lying on the same curved plane as
the center of the image.

• Radial distortion. Radial distortion is a type of distortion that causes the
magnification or shrinking of the image to vary at different radial distances
from the center of the image. This results in image distortion, causing straight
lines to appear curved.

Furthermore, we enumerate below an additional pair of aberrations frequently en-
countered within optical systems.

Chromatic aberrations. Another type of lens aberration is due to the impact of
the wavelength of the radiation on the refractive index. Consequently, the optical
system may exhibit different responses depending on the wavelength. Hence, the
lens may have different responses for different radiation wavelengths [8].

Radiometric distortions. Finally, the last distortion category that we present in
this Section alters brightness. The most common radiometric distortion is vi-
gnetting, which causes a darkening of the peripherical area of the formed image.
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There are several causes of vignetting: some light rays with significant incidence
are more likely to be blocked by part of the lens system, and there is also a natural
vignetting effect: recall the cos4α fall of irradiance from the equation 2.19.

optical axis

Lens

image plane

optical axis

image plane

Lens

Lens

Lens

Figure 2.20: Left: Illustration of spherical lens aberration. Peripheral rays converge at dif-
ferent points than those passing through the center due to the spherical lens deviating from
the optimal hyperbola shape [8]. Right: Chromatic aberrations are depicted here. Rays from
different wavelengths focus at distinct points, exhibiting here both longitudinal and lateral
aberrations [8].

Optical designers employ various techniques to minimize aberrations, particu-
larly by using different lens elements -compound lenses- made from specific mate-
rials to counteract these effects. Alternatively, software algorithms can be employed
to correct these defects, as demonstrated in a recent study by Eboli et al. [24].

2.1.7.3 Compound Lenses

In cameras, a system of multiple lenses arranged in a specific configuration is pre-
ferred over a single lens. This is because lens systems offer the flexibility to correct
optical aberrations through careful arrangement [6, 8], and they provide increased
options for focal length and zoom capabilities [8, 6]. The modeling of optical sys-
tems is typically done using proprietary models [25].

As an illustration, Figure 2.21 depicts a triplet lens system, which serves as a
basic example of such compound lenses. These systems offer sufficient degrees of
freedom to effectively reduce the Seidel aberrations discussed earlier.

Optical axis

Figure 2.21: A triplet lens is one of the most simple types of compound lenses that consists of
three individual lenses. Its design offers the lens designer the necessary degrees of freedom
to effectively correct Seidel aberration in the lens [6, 8].
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2.1.7.4 Extrinsic Source of Blurs

Other phenomena may alter the quality of the formed image by producing blurred
images which are scene-dependent. Depending on the use case, these can become
significant and be the main bottleneck that affects the resolution power of the de-
vice. We list only a few sources of blurs below for our quick tour.

Motion blur. Taking an image requires a certain exposition time that ranges from
a few milliseconds to several minutes, depending on the scene. During this interval,
both the camera and objects in the scene can move, resulting in motion blur in the
image. Motion blur can be expressed as an integration of different views of the
moving scene over a time τ, as formulated by the authors of [26]:

y(u) =
1
τ

∫ τ

t=0
f (u, t)dt, (2.32)

where f is the image formed on the sensor plane. Motion blur becomes noticeable
when the motion of the camera is faster than the camera’s shutter speed [26]. This
issue is commonly encountered, especially in night photography scenarios. To ad-
dress this limitation, we introduce burst algorithms in Section 2.6 that help mitigate
the effects of motion blur in images.

Atmospheric turbulences. The optical effects caused by atmospheric turbulence
stem from variations in temperature and density, leading to fluctuations in the re-
fractive index of the air [27]. These fluctuations can adversely impact long-range
imaging systems by introducing random changes in the refractive index along the
path of light rays perturbing the wavefront. As a result, these variations cause
geometric distortion and result in space and time-varying blur in the captured im-
ages [27]. Notably, atmospheric turbulence poses a significant limitation for optical
telescopes on Earth.

Having examined the primary sources of limitations for optical systems, the fol-
lowing Section will delve into the common methods used in the literature to model
these imperfections.

2.1.8 Modeling

We now aim to model the degradation caused by real optics and establish the re-
lationship between the irradiance image formed on the corresponding high-quality
image forming on an idealized camera.

While the image formation model is inherently continuous, we focus solely on
digital signals throughout this chapter. This decision arises from the impractical-
ity of numerically reconstructing continuous representations of continuous signals.
Hence, we work with high-resolution images sampled on a sufficiently dense grid,
respecting the Nyquist criterion. This assumption is commonly employed in the
literature (see [28]). For a more detailed discussion and a meticulous discretization
of the continuous formation model, we direct interested readers to [29]. Further
insights into the sampling process can be found in the dedicated Section 2.2.4. Fur-
thermore, we present a continuous formation model inSection2.3.

Within this Section, we denote the digital signal of the degraded camera as y and
the digital representation of the image captured by the idealized pinhole camera at
the same location as x.
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2.1.8.1 Point Spread Function

In practice, all intrinsic blurs described in the previous sections co-occur6, and it is
convenient to model these defects with a point spread function (PSF).

Spatially variant filtering. The PSF describes the response of an imaging system
to a point source, and in general, this can be a 4-D function of the spatial posi-
tion of the source and its wavelength [7, 30]. A common assumption is that the
PSF is invariant in the spectral band of each color filter. Therefore, the PSF is in-
variant for the three RGB channels [7]. Second, standard optical systems’ surfaces
vary smoothly, so the associated PSFs are also assumed to vary smoothly with the
position in the image plane and object distance. Therefore, assuming the scene’s
depth varies smoothly, a common assumption is that PSFs are spatially invariant in
a local neighborhood [7]. The formation model, including all intrinsic blurs, can be
expressed as a local two-dimensional convolution on image tiles.

We denote by x the sharp image formed on the image plane of an ideal pinhole
camera. We denote by Ri the linear operator that extracts a patch centered at posi-
tion i, then Rix ∈ Rq×q is the square patch of the image x centered at position i. For
a given tile location i and a given color, the PSF is a 2D convolution kernel of finite
support that we denote by hi. The degraded version of x is the image y, modeled as
the averaging of n overlapping patches blurred with spatially varying PSF constants
over the tiles. For a given color channel, the degraded image is

y =
1
q

n

∑
i=1

R>i
[
(Rix) ∗ hi

]
= x ? h, (2.33)

where R>i is the linear operator that places a patch of size q at position i in an image
and the operator ∗ denotes the convolution on 2d images. For clarity, we denote by
? the 2d filtering with a set of spatially varying kernels note abusively h.

Geometrical distortions. We can also model distortions induced by lens imperfec-
tions in our model. This effect can be directly modeled within the spatially varying
PSFs. Geometrical distortions brought by lens defects lead to a shift of the center of
mass of the PSF, especially in the peripherical region of the image [7]. However, it
can be more convenient to decouple distortions from PSFs. To this end, geometrical
distortions can be represented with a diffeomorphism F : R2 → R2 of the focal
plane into itself [31]. The resulting blurred and distorted version y of the clean
image x is then expressed as

y =
(
WF(x)

)
? h, (2.34)

whereWF is a warping operator that deform the image x based on the mapping F.

Calibrating the PSF. For problems like deblurring or super-resolution, having an
accurate estimate of the PSF is often a limiting factor. Relying solely on camera
manufacturer-provided information for PSF estimation is often insufficient to create
a precise model [32, 30]. PSF calibration involves estimating the PSF of the optical
system. One approach is to use a calibration target with known characteristics,
such as a grid of small dots [33] or a pseudo-random pattern [34]. The captured

6Non-ideal sampling blur due to photons integration on finite pixel area of the imaging sensor
should also be taken into account, this is discussed in Section 2.2.4
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image of the target is then analyzed to estimate the PSF. It has been shown that
using an appropriate pattern [34, 35] can turn PSF estimation into a well-posed
inverse problem. However, estimating spatially varying kernels presents challenges,
requiring multiple photographs with the pattern at various locations. Second, the
PSFs are not fixed and can vary with many factors such as field heights, object
distances, and wavelengths [32].

Limitations of 2d models. As we observed, the Point Spread Function is influ-
enced by both the spatial position of the source and its color. While it is possible
to estimate the PSF at different object distances, apertures, and wavelengths [32],
certain complex phenomena, such as ray occlusions and multiple inter-reflections
(as illustrated in Figure 2.22 and Figure 2.23), cannot be accurately simulated using
the PSF alone [25]. Regrettably, these occlusions and inter-reflections have signif-
icant visual impact and are common in various scenes [25]. Due to the inherent
limitations of 2D models, these phenomena require more faithful modeling of the
optical system, necessitating the use of ray tracing simulations.

Figure 2.22: When a second object is introduced into the system, the local PSF undergoes
changes because the occlusion of rays by the second object modifies the distribution of light
received by the camera from the background object.

Figure 2.23: The point spread function (PSF) of an optical system is influenced not only by
the direct path of light from the diffuser to the optical system but also by the light reflected
from objects in the scene. This means that the presence of objects in the scene can alter the
PSF, as light from the diffuser may be reflected by these objects and collected by the camera.
Hence, the PSF can be influenced by the overall scene configuration.

2.1.8.2 Ray Transfer Matrices

To address the limitations associated with point spread functions (PSFs) and achieve
more accurate simulations of optical systems, an alternative approach involves uti-
lizing ray tracing to simulate images formed on the image plane [25]. Thanks to
recent advancements in physically-based rendering and enhanced computational
capabilities, it is feasible to realistically simulate complex three-dimensional spec-
tral scenes [12].
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input plane output plane

Front focal point Back focal point

Figure 2.24: Modeling optical systems. Left: The ray-transfer matrix considers position x
and angle θ relative to input and output planes [6]. Right: In contrast, ray tracing extends its
capabilities by handling a 6-dimensional input, consisting of a position vector p and a unit
direction vector d, generating a corresponding 6-dimensional output comprising a position
and direction vector [25]. Figure inspired from [25].

Matrix ray transfer analysis. Characterizing the transfer response of an optical
system can be achieved very effectively through ray transfer matrix analysis [6, 8].
This method utilizes 2x2 matrices to represent optical elements. As illustrated in
Figure 2.24, a light ray enters an element crossing its input plane at a distance x1
from the optical axis, in a direction that makes an angle θ1 with the optical axis.
After propagation to the output plane, that ray is found at a distance x2 from the
optical axis and at an angle θ2 with respect to it. Under the paraxial approximation
introduced in Section 2.1.6, these characteristic values of the output ray can be
calculated with a 2x2 matrix for many optical elements[

x2
θ2

]
=

[
A B
C D

] [
x1
θ1

]
. (2.35)

For example, in free space between the two input and output planes, the matrix is

S =

[
1 d
0 1

]
, (2.36)

where d is the distance between the input and output plane. Another example is
that of a thin lens of focal length f . Its matrix is given by

L =

[
1 0
− 1

f 1

]
. (2.37)

A concise ray transfer matrix can be derived by multiplying these matrices, describ-
ing the entire optical system. For the example of two thin lenses of focal length f
separated by free space of length d

LSL =

[
1 0
− 1

f 1

] [
1 d
0 1

] [
1 0
− 1

f 1

]
(2.38)

With this technique, it becomes very easy to find the characteristics value of an
optical system, such as focal length, front, and output focal point for a compound
lens made of three, four, or more thin lenses. However, note that the technique
described above uses the parallaxial assumption and requires that all rays have
a small angle θ relative to the system’s optical axis such that the approximation
sin θ ≈ θ remains valid. For a complete analysis to evaluate aberrations, full ray
tracing should be performed using dedicated software [36].
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2.2 Image Sensing

2.2.1 Sensing Irradiance

As we saw in the previous Section, optical modules convert radiance from a scene
into an irradiance image at the sensor surface. Once the image is formed on the
sensor’s plane, the sensor measures the irradiance E(u, λ, t). Camera sensors are
composed of millions of light-sensitive cells known as photodiodes arranged in
a grid-like pattern. Each photodiode captures the local intensity of the incident
light and generates photo-electron charges through the photoelectric effect, with the
number of charges being proportional to the intensity of the received radiation [30].

Formally, following the notation of Garnier et al. [37], the area Adet of the photo-
site detector spatially integrates the spectral irradiance, producing a spectral radiant
flux Φλ in W.m−1, according to the formula

Φλ(λ, t) =
∫

Adet

E(u, λ, t)dA. (2.39)

Finally, the signal for each photosite, after double integration over the time of expo-
sure τ and across the light waveband from λmin to λmax, can be expressed as

s =
∫

τ

∫ λmax

λmin

Φλ(λ, t)R(λ)dλdt, (2.40)

where R(λ) is the spectral responsivity [37] or gain, representing the ratio of the
detector output signal (in Volts or Amperes) to the incident spectral flux Φλ.

The obtained signal is then amplified by an amplifier, converted to a digital sig-
nal using an analog-to-digital converter (ADC), and further processed by the ISP
chain we will cover in Section 2.4. Digital sensors have replaced photographic films
due to their higher sensitivity and efficiency in collecting light. When photons strike
the sensor’s atoms, they create a local charge of electrons, with digital sensors con-
verting approximately 50% of photons to electrons compared to only 5% collected
by photographic films. Two technologies, CCD and CMOS, are used to read this
local charge, with CMOS being the dominant technology in prosumer cameras.

In the following Section, we will explore the working principle of digital imaging
sensors in more detail.

Photoelectric effect. The photoelectric effect occurs when a material emits elec-
trons upon exposure to electromagnetic radiation, see Figurefig:photo, such as visi-
ble light or infrared. Electrons are emitted by the material at a specific frequency of
light, with no emission occurring for radiation frequencies below a certain thresh-
old [9]. The energy of emitted electrons is influenced solely by the wavelength
of the radiation, not its intensity [38]. The wave interpretation of light does not
account for these observations, and Einstein proposed an explanation by postulat-
ing that light consists of discrete particles called photons whose energy is directly
related to their frequency. That earned him the Nobel Prize in 1921. This effect
highlights the particle-like nature of light and serves as a fundamental principle
underlying various applications, including photodetectors. Imaging sensors rely on
the photoelectric effect to detect the flux of photons using photodiodes.

In the upcoming paragraphs, we will explain the working principle of photodi-
odes. To begin, we will review fundamental concepts from the physics of semicon-
ductors.
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Figure 2.25: The photoelectric effect refers to the ejection of electrons from a material surface
upon interaction with light. When incident light hits the material, electrons absorb energy
from the photons and can be emitted if it has the minimum energy required [9].

Semiconductors. In an isolated atom, the electron’s energy is discrete and can
only take predefined values [9]. In a solid, electrons’ energy can take any value
among certain intervals called bands separated by forbidden bands [9]. Repartition
of electrons in the bands depends on temperature and obeys Fermi-Dirac law [9].
At a temperature of 0 Kelvin, the last fully occupied band is called the valence
band. The next band above, which can be empty or partially occupied, is called the
conduction band. The energy difference between the valence and conduction band is
called the gap. Electrons in the valence band contribute to the local cohesion of the
solid, while electrons with a higher energy state in the conduction band can move
freely in the solid and be put in motion with electrical fields to generate current [9].

For conductors, these two bands overlap [38], whereas, for isolators and semi-
conductors, there is a band gap between these two bands. For semiconductors,
such as silicon (Si), the gap is smaller, and some electrons can transition to the
conduction band with additional energy from radiations or heat [38]. As we saw
in the previous paragraph, when light strikes a material, it can stimulate electrons
to transition to a higher energy level and make them go in the conduction band,
where they can flow in the material. The freed electron will also leave behind a hole:
a virtual positively charged particle. In semiconductor physics, we say it creates
electron/hole pairs [38].

Photodiodes. Without anything else done, the electrons/hole will eventually re-
combine and therefore cannot be detected [7]. To detect photo-generated electron
holes pair a solution is to generate an electric field, to move the charge carriers, and
hence create a current that can be further detected. This could be done simply by
polarizing a semiconductor (see photoresistors [38, 39]), but this is most efficiently
done with a PN junction [38].

PN junction. PN junction is the combination of two types of semiconductors
obtained by locally doping the semiconductor (a silicon crystal, for example). Dop-
ing refers to introducing different atoms in the silicon crystal. Two types of dopants
exist: n-type dopant and p-type dopant. N-type dopant -for example, phosphor
atoms- increases the electron density in the semiconductor, and p-type dopants
-bore atoms, for example- increase hole density. It is crucial to note that after dop-
ing, semiconductors stay neutral [38]. When a p-region is put in contact with an
n-region, magic can happen: at the interface between the two regions, holes and
electrons recombine thanks to a diffusion process [39]. This locally exposes pos-
itively and negatively charged ions on both sides of the region. This creates an
equilibrium as the formed ions prevent electrons and holes from moving beyond a
depletion zone [38].
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Figure 2.26: PN junction schematic view.

Now, when a photon is absorbed in the depletion region, it stimulates an elec-
tron, and the freed electrons are pulled to the cathode due to the electric field
created by the ions on both sides [39]. Hence, it creates a current in the circuit. The
larger the radiant flux, the more current will flow through the circuit. This process
is illustrated in Figure 2.26

It should be understood that the number of created electron/hole pairs is a
nondeterministic process influenced by the material properties and the photon’s
frequency. The quantum efficiency η -note that η depends on the wavelength [7]-
models its relation and is defined as the ratio between the ratio of electron-hole
pairs created e to the number of received photons i

η(λ) =
e(λ)

i
. (2.41)

For instance, photodiodes in CCD sensors can exhibit a quantum efficiency of well
over 90% at specific wavelengths [38].

It is worth noting that it is possible to detect light with a semiconductor without
a PN junction. If the light is emitted on a polarized semiconductor, the material’s
conductivity will increase, and a current variation can be detected. This kind of
device is known as a photoresistor, and it is utilized when cost must be kept low
and high sensitivity is not a primary requirement.

Full well capacity. The number of photons that can be detected depends on
the size of the depletion zone and is called the full well capacity, typically about 105

electrons per pixel [38]. When high irradiance exceeds this capacity, the exceeding
photons cannot be detected, and information is lost due to sensor saturation. The
larger the photosite surface, the larger the capacity. Hence, larger pixels generally
have a larger capacity than smaller pixels. Furthermore, to enhance the capacity,
the photodiodes are reversely biased as the potential applied to the semiconductor
will change the equilibrium and increase the surface of the depletion region.

Dark current: It is worth mentioning that electron/hole pairs can also be ther-
mally generated within the sensor. These thermally generated electrons cannot be
distinguished from the electrons converted from photons and will add to the over-
all generated current. This component of current is often referred to as the dark
current of the sensor. Reducing the dark current can be achieved by cooling down
the sensor [7].

Both of these aspects play a crucial role in defining the dynamic range of the
sensor, which represents the ratio between the largest and smallest values that the
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Gain
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Pixel

Figure 2.27: CCD and CMOS sensor working principle. Left: CCD sensor, charges accu-
mulated on each of the pixels are moved step by step by passing through the neighboring
pixels in order to be read sequentially by a single amplifier. Right: CMOS sensor locally
amplifies the signal from each pixel with a dedicated amplifier. The signal is then read out
by addressing the lines and columns. Figures inspired from [7].

sensor can measure. The dynamic range will be further explored in detail in Section
2.2.2.

CCD & CMOS sensors. Having described the working principle of photodiodes,
we now review the two imaging sensors: CCD and CMOS. A minimalist imaging
sensor consists of photodiodes connected to an amplification and conversion stage.
However, using long wires -relative to photosite dimensions- in this setup leads to
low SNR and slow readout speed [7]. CCD and CMOS sensors are designed to
overcome this challenge.

CCD sensors, In CCD sensors, the charges accumulate on a collection site for
each pixel during the exposition phase (most CCD sensors use global shutters).
Then, to be read out, charges are sequentially transferred to neighboring pixels and
sent to a single output amplifier. CCD usually have better SNR and dynamic range
due to large photon collection sites. But they generally suffer from slow reading
time and large power consumption. See Figure 2.27 for an example.

CMOS sensors. CMOS sensors propose a different solution. A local amplifier
is integrated into each pixel’s collection site. Then, the amplified charges are read
out by column and row addressing sequentially. CMOS is cheaper than CCD to
produce, but CMOS may suffer from worst SNRs and dynamic range. Additionally,
due to manufacturing variations in the semiconductors and local circuitry, every
pixel has different gain and noise characteristics, resulting in fixed pattern noise.
On the other hand, the addressing mechanism allows reading out sub-regions at
high speed. See Figure 2.27 for an illustration of that type of sensor.

Rolling shutter. CMOS sensors typically capture one row at a time. The ac-
quisition process looks like the following: a row at a time in sequence, pixels’
charges are reset to zero, and photodiodes are biased and made sensitive. One ex-
posure time later, those first sensitized pixels are read while others are exposed.
This process is sometimes called a rolling shutter. The main advantage of rolling
shutters is cost: they are much cheaper to manufacture because they need smaller
memory buffers. But rolling shutters can cause problems when taking pictures of
fast-moving objects or when the camera moves rapidly, as the resulting images can
appear distorted. CCD sensor or global shutter CMOS does not have this problem.
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Instead, they accumulate charges for all photo sites of the image all at once and
then read charges in a second phase.

Micro optics. Finally, another drawback of CMOS sensors is that the active
circuitry for each pixel takes up some area on the surface of the photo site. This
reduces the fill factor –the fraction of the pixel surface that converts received light–
and then reduces the photon-detection efficiency of the device. To mitigate this
problem, a layer of micro-lenses can be placed on top of the photodiodes to focus
the light flux onto the photosensitive area. Back-side illuminated (BSI) sensors can
also mitigate this problem. This new generation of sensors places the circuitry to the
back of the sensor, allowing more light to reach the photodiodes. These improve-
ments not only improve photon-detection efficiency but also mitigate the occurrence
of unwanted inter-reflections, also known as cross talks, within the sensor.

2.2.2 Noise Models

In the following sections, we will present a comprehensive sensor model that incor-
porates noise modeling, accounting for both saturation and noise effects induced
by the sensor. Our model draws inspiration from the work of Emil Martinec [40]
and the noise model introduced in [41].

Sensor model. Assuming a static scene7 when a pixel is exposed to a photon flux
Φ8, in photons per second -also known as radiant flux- it accumulates Φ∆t photons
during the exposure time ∆t. The raw value s returned by the sensor is a linear
function of the number of photons collected. The measured raw value s can be
expressed as

s(Φ) = min
(

Φ∆t
g

+ sb + N, smax

)
, (2.42)

where s is expressed as a digital number (DN) 9. Here, g is the sensor gain in
photons/DN, which is inversely related to the ISO setting G10 with the relation
G = U/g, where U is a camera constant. sb represents the black level of the cam-
era, which is the data number at which the photosite receives no light [41]. The
saturation value smax (in DN) is reached when more than (smax − s0)g photons are
collected. Note that the saturation level depends on the full well capacity of the
pixel and the gain. It is important to note that the maximal digital value is usually
set to be reached at a lower value than the analog saturation point of the sensor [42].

Lastly, the variable N represents a zero-mean random variable that captures
noise introduced throughout the entire acquisition chain. In the following Section,
we will review the main sources of noise for imaging sensors and present a widely
used noise model.

Shot noise. The more intense the photon flux Φ received by a pixel and the larger
the exposition time ∆t, the more photons hit the sensor. For a scene with constant
brightness, the number of photons arriving at a given sensor area will be random

7The spectral radiant flux is assumed to be constant through time, i.e., Φλ(λ, t) = Φλ(λ)
8Here, the radiant flux is the integral over the color band B of the spectral radiant flux, Φ =∫

λ∈B F(λ)Φλ(λ)dλ, where F(λ) is the response of the colored filter. See Section 2.2.5 for more details on
color sensing.

9digital number (DN) is the unit in which raw values are measured. It is also sometimes called ADU
(analog-to-digital units).

10ISO is a camera setting which refers to the sensitivity of the camera’s image sensor to light.
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and fluctuate around an average value [43]. We model this random process with the
random variable P expressed in DN. The number of arriving photons is then gP.
The statistical modeling of such a random process is generally chosen as a Poisson
law, which is considered a reasonable statistical model for most light sources [16].

An important characteristic of a Poisson law is that the variance is equal to the
mean of the distribution. In other words, if, on average, 1000 photons reach the
sensor for a shot, the count of photons will typically be in the range ± 100 for each
shot. The shot noise variance is

Var(P) =
Φ∆t

g
. (2.43)

So, the shot noise variance grows with the light intensity. But interestingly, the
signal-to-noise ratio (SNR), defined as E(P)2/Var(P) grows with light intensity Φ.
Therefore, somewhat counterintuitively, lower illumination levels make the shot
noise more apparent [41].

Read noise. After the exposure, the collected photo-electrons are converted to
a voltage, which is then amplified, sequentially read, digitized, and possibly re-
amplified for processing by the ISP [41]. In an ideal scenario, the digital number
read for each pixel is directly proportional to the photon counts, according to the
sensor gain, which serves as the conversion factor. However, in reality, all these
steps introduce noise into the measurements. A common assumption is that the
readout noise, represented by the random variable R, is independent of the signal
intensity [43]. It can be modeled as a zero-centered Gaussian distribution with a
variance σ2

R that depends on the ISO gain and characteristics of the sensor [43].

Relationship with ISO. Modeling the dependence of read noise on ISO is of-
ten helpful, especially when optimizing ISO, exposure time, and aperture settings
during a burst [41]. The read noise is partly ISO-dependent because some readout
noise is amplified alongside the amplification stage. A simple yet effective model
assumes that read noise consists of two independent noise sources [40, 22]: pre-
amplification and post-amplification noises. The variance of the sum of these two
independent random variables is then given by:

Var(R) =
(

σread
g

)2
+ σ2

ADC. (2.44)

The first term represents noise from the sensor readout, while the last term com-
bines quantization noise and amplifier noise. To determine these two linear coeffi-
cients, we can utilize the EXIF data from the camera, as read noise at a specific ISO
setting is often provided in the raw file’s metadata. However, it is worth noting that
most modern cameras use multi-stage amplification schemes, rendering a linear fit-
ting of the read noise/ISO curve inaccurate. In practice, more than two coefficients
must be used for an accurate fit [40]. For further details on this topic, refer to [40].

Quantization error. After converting the photon flux to a voltage and ampli-
fying the analog signal, the signal is converted to a digital signal by the ADC con-
verter. During this process, a portion of the information is lost due to quantization
errors, also known as posterization. A common noise model assumes that quantiza-
tion errors are not significantly correlated and follow a uniform distribution. Under
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the assumption that the quantization step of the digital signal is ∆ and is small rela-
tive to the variation in the signal being quantized [44], the variance of quantization
error will be approximately ∆2

12 . For modern sensors with resolutions ranging from
10 to 14 bits, this average quantization error of approximately 0.3 is often negligible
in comparison to the read noise of the camera [40].

Other sources of noise. Below, we briefly discuss additional noise sources, even
though they are often neglected when modeling sensor noise.

• Pattern noise. In real-world scenarios, read noise is often not spatially inde-
pendent and may not be zero mean. As a result, patterns can be observed
in the noise fluctuations. Although pattern noise might be a minor contribu-
tion to the overall noise, the human eye is sensitive to detecting structured
patterns. To mitigate pattern noise, several black frames can be averaged [40].

• Thermal noise. Thermal agitation of electrons on pixels can liberate a few that
are not distinguishable from electrons liberated from photons’ arrivals. Hence,
it is another source of noise. The variance of thermal noise is often modeled
as a constant function through exposure time and temperature for a given
camera. As exposure times are typically short for non-scientific applications,
this noise source is often overlooked [40].

• Pixel response non-uniformity (PRNU). Due to the design of CMOS sensors
(discussed in Section 2.2.1), not all pixels have the same efficiency in con-
verting photons to data numbers. Consequently, there is non-uniformity in
pixel responses, resulting in varying read noise for each pixel. Examples of
such non-uniformities include hot pixels, which exhibit higher sensitivity than
neighboring pixels, leading to quicker saturation, and dead pixels, which do
not output any signal at all.

Noise model. Having introduced the various sources of noise, we can summarize
them with a single noise model that considers only shot noise and read noise, ne-
glecting other sources for digital sensors. The noise model is often simplified by
assuming that both shot noise and read noise can be represented using a single
zero-centered heteroscedastic Gaussian distribution

N ∼ N (0, σ2
N). (2.45)

These two noise sources, shot noise and read noise, are entirely independent, and
their variances add up. For pixels below the saturation point, we have

σ2
N = Var(P) + Var(R) (2.46)

=
Φ∆t
g2 +

σ2
read
g2 + σ2

ADC. (2.47)

The first term represents the shot noise and depends on the light intensity. The
second and the last terms account for the read noise variance. The two terms,
respectively, correspond to the post-amplifier and pre-amplifier noise. In this way,
we can model the total noise variance for digital sensors in terms of shot noise and
read noise contributions.
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Signal-to-noise-ratio. Using the simplified noise model, we can derive the
squared SNR for a pixel, denoted as SNR(Φ)2, where Φ is the photon flux received
by the pixel during exposure time ∆t. The SNR is given by

SNR(Φ)2 =
(Φ∆t/g)2

Var(N)
=

(Φ∆t)2 · 1s(Φ)<smax

Φ∆t + σ2
read + σ2

ADC · g2
, (2.48)

Where 1s(Φ∆t)<smax models the case when the pixel is saturated, resulting in a null
SNR.

The SNR increases monotonically with the number of photons collected, pro-
portional to Φ∆t until it reaches saturation, where the SNR is reduced to zero.
When graphing the SNR using the noise parameters of real cameras, we observe
two phases. In the first phase, additive noise dominates, so the SNR increases lin-
early with Φ. In the second phase, shot noise becomes dominant, and the SNR
increases with the square root of Φ [41, 43].

Choosing the exposure time involves a tradeoff between SNR and pixel satura-
tion, disregarding motion blur. Longer exposures result in higher SNR, but they
also risk saturating highlights in the image. Therefore, photographers must care-
fully balance exposure time to achieve the desired noise level and prevent saturation
in important image regions.

Now that we have reviewed the noise model and discussed various noise sources,
we have the necessary tools to delve into another key performance metric of imag-
ing devices: dynamic range.

2.2.3 Dynamic Range

An essential aspect of imaging sensors is dynamic range, which accounts for the
capacity of the sensor to capture details in a broad range of illumination. The
human eye can distinguish details in a formidable range of brightness [5, 14, 45]. We
give some examples of real-world luminance 11 values in the table below (from [30,
14]):

Scene Luminance [cd.sr/m2]
Moonless Sky 2 · 10−3

Full Moon 2.5 · 10−1

Sunrise/Sunset 4 · 102

Blue Sky 2 · 104

Sunlight (zenith) 1.2 · 105

The dynamic range may have different definitions depending on the context. From
an engineering perspective, this is the ratio d between the highest value smax that
can be recorded by the sensor and the lowest discernable value that the sensor can
read smin [45]:

d =
smax

smin
. (2.49)

This ratio is generally defined in stops, orders, or decibels [14]. We summarize
commonly used formulas to express dynamic range in the table below:

11Luminance, akin to radiance, accounts for the human eye’s perception of light by weighting spectral
radiance based on the eye’s sensitivity to different wavelengths.
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Name Formula Unit
Log exposure range d = log2(smax)− log2(smin) stops

Peak signal to noise ratio d = 20 · log1(smax/smin) dB

It is important to note that because sensors are noisy, the minimal discernable value
is never zero. The minimum discernable signal is often chosen as the noise floor of
the sensor. For a camera, it makes sense to take the sensor’s read noise standard
deviation as the minimal discernable value:

d =
smax

σR
. (2.50)

Practical dynamic range. The last definition of dynamic range may not al-
ways provide practical insights because the lowest discernable value is subjective
and varies depending on the specific use context. For some applications, it can be
more beneficial to consider a minimum discernable with a S/N ratio greater than
one [40].

Sensor’s dynamic range. As discussed in Section 2.2.1, the dynamic range of
a camera’s sensor is influenced by various factors, including the Full Well capacity
and sensor noise. Increasing the Full Well capacity, achieved through larger pixel
area, optimized doping, and improved detector properties, helps expand the dy-
namic range by reducing the risk of saturation in high-intensity scenes. On the
other hand, readout noise affects the lower limit of the dynamic range. Employing
denoising algorithms can also be effective in minimizing noise and thus extending
the useful range of the sensor. Exposure bracketing is also often used to increase
the dynamic range by capturing multiple images at different exposure settings and
then combining them (as discussed in Section 2.6).

Human eye. The human eye excels in dynamic range, although comparing it
to cameras is problematic [46]. The zone of visual acuity is narrow for the human
eye [30], with a significant decrease in visual ability beyond the center. At the
periphery, we only perceive large-scale contrast and minimal color. To construct
a detailed mental image of a scene, our eyes rapidly focus on various regions of
interest [30]. In scenes with a wide dynamic range, our eyes adapt quickly as our
pupils adjust to different brightness levels. Some estimates suggest that the human
eye can distinguish up to 24 f-stops of dynamic range [46], whereas most DSLRs
offer a usable range of 5-9 f-stops. Regarding instantaneous dynamic range (with a
fixed pupil opening), it is estimated that our eyes can perceive approximately only
10-14 f-stops [46].

2.2.4 Image Sampling and Aliasing

In the context of digital imaging, the irradiance image formed on the sensor plane is
inherently continuous in space. However, camera sensors produce digital images by
capturing discrete pixel values. This discretization process can lead to discrepancies
between the continuous and digital representations. In this Section, we briefly ex-
plore the considerations associated with accurately representing continuous images
through discrete digital versions through sampling. We refer the reader to the two
thesis [29, 47] as excellent introductions to the topic.
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Ideal sampling. We focus first on the case of ideal sampling of a continuous 1-D
signal f : R→ R for simplicity. We can model the sampling in equidistant steps by
the product of the sampled continuous signal f (t) and the Dirac comb [48]

y(t) = ST
{

f (t)
}
=

∞

∑
m=−∞

f (t) · δ(t−mT), (2.51)

where m ∈ Z and δ is the Dirac delta impulse

δ(t) =

{
1, if t = 0
0, otherwise.

(2.52)

The resulting signal y(t) is continuous and represents the discrete values y[n] for
t = nT. Let F(ν) = F{ f (t)} be the continuous Fourier transform of the signal f .
Analysis of y(t) in the Fourier domain shows that y is sufficient to obtain a periodic
summation of F(ν) in the Fourier domain. Given appropriate conditions, on the
sampling frequency that we will review in the next paragraph, it is then possible
for the copies to remain distinct for a band-limited signal f .

Nyquist sampling. The quality of the reconstruction depends on the sampling
frequency, which is defined as

νs =
1
T

. (2.53)

Assuming that the signal is band-limited, i.e., if there exists a cut-off frequency ν0
such that the Fourier spectrum is null above that cut-off frequency, then according
to the Nyquist-Shannon theorem, if the sampling frequency νs is chosen with νs >
2ν0, it is feasible to fully recover f from its discrete samples y[n]. This means
that in that setting, the sampling does not result in any loss of information [29].
And according to the Shannon-Whitaker theorem, the continuous signal can be
reconstructed exaclty via sinc convolution [49]

f (t) = ∑
n∈Z2

y[n] · sinc(t− n). (2.54)

Undersampling with aliasing. In undersampling, if νs is chosen as νs < 2ν0, alias-
ing occurs. A reconstruction of the clean signal from the discrete samples is ambigu-
ous, and this can result in various artifacts (such as jagged edges, moiré patterns,
or distortion for 2-D images) that do not accurately reflect the original signal [50,
29]. One solution to overcome this problem is to filter the measured signal using
a low-pass filter [29] to erase high frequencies and alleviate aliasing issues. In the
case of images, one other solution is to use several frames to super-resolve these
aliased frequencies [51, 52, 53, 29, 28] we address this approach in Sections 2.6.

Discretization of 2-D images. The sampling theorem can be extended to functions
of two variables such as images [29]. We can model the bi-dimensional sampling
process of the continuous signal f : R2 → R performed by the sensor array as

y(u) = S∆
{

f (u)
}
=

∞

∑
m=−∞

∞

∑
n=−∞

f (u, v) · δ(u−m∆, v− n∆), (2.55)
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where m, n ∈ Z. Here, ∆ is the pixel pitch which is assumed to be the same in both
directions (u, v), and δ is the 2-D Dirac delta impulse such as

δ(u) =

{
1, if (u, v) = 0
0, otherwise.

(2.56)

We denote by y ∈ RMu ·Mv the vector representing the digitized version of the
image f over the image domain Ω f ⊂ R2. Note that for convenience, the values
y(u) at pixel positions u ∈ Ω f are usually reorganized into a vector using a line-
by-line scanning

y = S∆{ f } = [y(∆, ∆), y(∆, 2∆), · · · , y(Mu∆, Mv∆)]T . (2.57)

Here, ∆ is the pixel pitch, which is assumed to be the same in both directions (u, v).
In this manuscript, we will denote by S the bi-dimensional ideal sampling operator
producing an image vector from a continuous signal f .

Real sampling. The sampling process was considered ideal such that a Dirac delta
could be used to model the sampling operation. However, this assumption is not
met in practice. In the case of an imaging sensor, the image is integrated over a finite
pixel area, and this averaging process needs to be accounted for. Mathematically
this is modeled by introducing a blurring kernel h(t) with shape depending on the
shape of the integration surface12.

y(t) = ST
{

f (t) ∗ h(t)
}

. (2.58)

To model imperfect sampling and integration of the detector over a finite area, first,
a filtered version of the signal is obtained based on the blurring kernel h, and finally,
a sampled signal is obtained with an ideal sampler S .

Sensor’s resolution. According to the Shannon-Nyquist sampling theorem, the
sensor must provide sufficiently high pixel density to avoid aliasing due to un-
dersampling. Two scenarios can occur: optic-limited cameras and detector-limited
cameras. In the first case, the resolution is limited by the sharpness of the image
formed with the optic. In practice, this happens when the lens produces a relatively
large lens spot size compared to the pixel size. In the second case, the sensor’s
resolution is not high enough to properly reconstruct the sharp image formed on
the image plane. This occurs when the lens is sharp enough to produce a relatively
small lens spot size compared to the pixel size. When enhancing the resolution,
a distinction can be made between two methods: diffractive and geometrical ap-
proaches. Geometrical has the role of circumventing limitations of the sensor and
reconstructing images at a finer sampling grid. In contrast, diffractive aims to alle-
viate the low pass effect of diffraction and other sources of blurs.

To conclude this Section, note that increasing pixel density or decreasing fill fac-
tor -the fraction of the pixel surface that converts received light- is not always the
solution, as it also reduces the sensor’s size. As discussed in Section 2.2.2, small
pixels generally come with worse dynamic range and SNRs due to the reduced
photon detection efficiency of the pixels.

12It’s worth noting that in the case of imaging sensors, pixel’s shape may not necessarily be square
due to the circuitry on the sensor’s surface (cf Section 2.2).
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2.2.5 Sensing Colors and Human Perception

In the upcoming Section, we will explore color perception and color sensing. While
our earlier discussion mainly centered around gray images formed with monochro-
matic light, we will now delve into representing colors and faithfully reproducing
the colors captured by a camera on display.

Light spectrum. Color is the sensation produced by the way objects reflect or emit
light and is linked to its spectral repartition [16]. A light source can be characterized
by its radiated power spectrum Φλ(λ), which indicates the power emitted at each
wavelength. When such a light source illuminates objects, the spectrum of the
reflected light is determined by the combination of the light source spectrum and
the reflection spectrum of the illuminated object [14, 6]. Thus, the spectrum of the
reflected light conveys information on both the light source and the illuminated
object [14]. Analyzing the reflected spectrum provides valuable insights into the
physical composition of illuminated objects.

Color perception. Contrary to other stimuli such as soundwaves13, the human
eye is not able to decompose with great precision the power spectrum of a light
source and distinguish the different monochromatic radiations composing it. In-
stead, the sensation of color comes from the stimulation of specialized cells called
cones [5] 14. Humans typically have three different kinds of cones, which are more
excited for distinct parts of the light spectrum, but other species can have a different
number of cones: the Mantis shrimp has 16 different cones [5]. Human cones are
usually labeled as short, long, and medium cones, and their peak sensibility is blue,
red, and green, respectively. Figure 2.28 shows the sensitivity of cones across the
visible spectrum. The combination of the stimulation of the three different cones
gives our brain color sensation. Different activations of the cone triplet will lead to
different perceived colors. Hence, the generation of pink stimuli through monochro-
matic radiation is unfeasible, as it necessitates the concurrent stimulation of S and
L cones while minimizing M cone excitation. Achieving this balance with a single-
wavelength light source is impracticable due to the inherent spectral sensitivities of
these cones, as depicted in Figure 2.28.

Metamerism. Another consequence of the last paragraph is that two light
sources of different combinations of wavelengths can produce the same color
perception. Despite differences in spectral power distributions, these two light
sources can cause similar activation of LMS cones. This phenomenon is known
as metamerism. And as we will explain, this phenomenon is in fact crucial in the
color imaging pipeline to reproduce faithfully colors captured by a camera on dis-
play [14, 54].

Quantifying color. In colorimetry, accurately quantifying colors is vital to ensure
color consistency in how objects appear to the human eye or when captured by a
camera and rendered on display or in print. That task is challenging due to the

13Humans can distinguish harmonics in a musical chord whereas, but cannot discern whether per-
ceived color stimuli result from pure monochromatic radiation or a combination of multiple pure radi-
ations. Differentiating whether perceived green arises from a combination of blue and yellow pigments
or single radiation in the 500-578 nm range remains impossible!

14The Human eye is made of rods and cones; rods are predominately important in low light and
don’t play an important role in color vision [14], so we focus on cones for our analysis.
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Figure 2.28: The graph depicts the sensitivities of human cones, with each curve representing
the sensitivity of a specific cone to different wavelengths. The peak wavelength, found at the
highest point of each curve, signifies the wavelength to which the cone exhibits the highest
sensitivity. Image credit: Wikipedia.

subjective nature of color perception in our brains. Color spaces offer a valuable so-
lution by providing a standardized representation of colors. Since the LMS cones’
activation level entirely defines color, a color can be defined as a (L, M, S) triplet of
the cones’ activation levels. But the LMS color’s representation has very unpracti-
cal properties: not all triplet values are physically possible, as stimulation of only
one cone at a time is impossible 15. And it would be problematic to build display
hardware as one would need a way to stimulate each cone independently. Fur-
thermore, cones’ spectral sensitivities were discovered only recently. So, different
representation systems are used.

Figure 2.29: RGB colorspace. Left: Color matching functions. The CIE RGB color matching
functions illustrate the proportions of primary colors needed to replicate a monochromatic
color, with its wavelength indicated on the horizontal axis. Right: Rg chromaticity diagram.
The red curve represents the different wavelengths in terms of chromaticity. Some wave-
lengths cannot be represented with the tree primaries of the RGB colorspaces. Therefore,
they map to a region of space with negative components. Image credit: Wikipedia.

Color Matching Functions. One of the main results of colorimetry is that al-
most all colors may be reproduced by mixing light from three -suitably pure16-

15this would be impossible to achieve the coordinate (0, 1, 0)
16Primaries with a pure power spectrum Φλ close to monochromatic lights can approximate a wider

range of color. This can be seen on the CIE XYZ diagram that we will discuss in the next paragraphs
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sources called primaries [14]. In the 20s, researchers proposed to define colors pre-
cisely from the mixing of three predefined monochromatic light sources with colors
in the red, green, and blue range. In their experiments, a subject should match
a target wavelength by mixing different amounts of the primaries. By recording
the intensity to match each wavelength, three functions r̄(λ),ḡ(λ) and b̄(λ) can be
constructed. They are called the color matching function (CMF). They are plotted
in Figure 2.29. Note that they can take negative values; this will be explained in
the next paragraph. Thus, a light source of spectral distribution Φλ can be associ-
ated with a linear combination of three spectral sources as they produce the same
stimuli:

Φλ ≡ r̄(λ)R + ḡ(λ)G + b̄(λ)B, (2.59)

where R, G and B are scalar values. The relation is a visual equivalence relation, de-
noted by ≡. It means that the produced colors are equivalent but does not imply the
equality of the two spectra (metamerism). Here, we will call the (R, G, B) triplet the
tristimulus value of Φ. Note that for a given light source of spectral distribution Φλ

the tristimulus values may be obtained by integration along the visible spectrum Λ:

R =
∫

λ∈Λ
Φλ r̄(λ)dλ, (2.60)

G =
∫

λ∈Λ
Φλ ḡ(λ)dλ, (2.61)

B =
∫

λ∈Λ
Φλ b̄(λ)dλ. (2.62)

The CMF leads to the CIE RGB colorspace proposed in 1931 by the CIE17.

Color substractions. It is worth noting that color-matching functions (CMFs)
may exhibit negative values, as not all colors, including monochromatic lights, can
be fully represented using a combination of these three primary colors. To address
this limitation, an additional color contribution was introduced to the target wave-
length being reproduced. This addition can be thought of as a color subtraction,
resulting in negative components in the CMFs [14]. This approach ensures that all
parts of the visible spectrum can be decomposed into three primaries, even if some
have negative components. Alternative color spaces are often used to mitigate this
issue, as we will see below.

Finally, it is important to acknowledge that the color-matching functions (CMFs)
are relative to each individual, and there is no guarantee that cone sensitivity is ex-
actly the same for everyone. To address this variability, the authors proposed con-
ducting experiments with several subjects and then averaging the results. However,
in the study, only a few individuals from the same age and ethnicity group were
included.

XYZ colorspace. To make color calculations more practical, the Commission
Internationale de l’Éclairage (CIE) introduced the XYZ colorspace, which ensures
that all visible color values are positive within the range [0, 1] on all the axes. It
is derived from the RGB colorspace through a carefully chosen linear transforma-
tion [54]. However, to accomplish this, the XYZ colorspace introduces virtual colors
that do not exist in the real world, often referred to as imaginary colors. These addi-
tional colors facilitate the mapping of all chromaticities within the desired range.

17Comission Internationale de l’éclairage: the international authority on light, illumination, color,
and color spaces.
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Chromaticity diagram (r,g) The XYZ colorspace is associated with tristimu-
lus values (X, Y, Z). From these values, chromaticity coordinates (x, y, z) can be
calculated, where:

x =
X

X + Y + Z
, (2.63)

y =
Y

X + Y + Z
, (2.64)

z =
Z

X + Y + Z
= 1− x− y. (2.65)

Since z is known if x and y, only (x, y) coordinates need to be kept. Chromaticity co-
ordinates (x, y) characterize a color’s chromaticity independently of its luminance.
These 2-dimensional coordinates can be plotted on a chromaticity diagram. In this
diagram shown in Figure 2.35, all monochromatic light maps to a position along
the curved boundary which is called the spectral locus. Three primaries will map to
three points on the diagram. The triangle formed by the three primaries contains a
range of colors that can be reconstructed with the primaries and is called the gamut.

Gamut. The gamut of a color space is the range of colors that can be repre-
sented within that color space. This is the boundary of all possible values that can
be captured or reproduced by the device. Chromaticities out of the gamut cannot
be measured or reproduced by the device. For instance, a laptop screen can only
reproduce a fraction of all existing colors.

Color spaces. Various devices such as cameras, monitors, scanners, TVs, and pro-
jectors use their unique sets of primaries to represent colors. Consequently, each
device employs its specific color space, determined by factors like RGB color filter
array spectral responsivity for cameras, LED color spectra for displays, or the three
phosphors of a CRT display [14, 54]. Conversion between these color spaces is es-
sential to ensure the faithful reproduction of colors. If the spectral responsitivity of
the camera filters are known, as well as the emission spectra of the photo elements
of the display, we can specify a transformation between a tristimulus value of the
camera and a tristimulus value of the display and thus reproduce the same colors.
This is an important consequence of metamerism.

Color spaces conversion. We can convert from one tristimulus colorspace to
another tristimulus colorspace using 3× 3 matrix color transformation. For exam-
ple, converting a color captured with specific tristimulus values to the XYZ col-
orspace is performed using a matrix transform of the following formX

Y
Z

 =

Xr Xg Xb
Yr Yg Yb
Zr Zg Zb

R
G
B

 , (2.66)

where [X, Y, Z] are the desired CIE XYZ tri-stimulus values, [R, G, B] are the tri-
stimulus values obtained from the device. Here, the 3x3 matrix is the measured
tri-stimulus values for the device, where [Xr, Yr, Zr] [Xg, Yg, Zg], [Xb, Yb, Zb] are
the measured CIE XYZ tri-stimulus values for the three channels, respectively, at
maximum emission. Conversely, to convert from XYZ to the RGB colorspace, we
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Figure 2.30: xy chromaticity diagram. Inside are represented the three primaries used to
define the RGB colorspace. The triangle encompasses colors that can be reproduced with the
three RGB primaries. Image credit: Wikipedia.

can use the inverse form of the matrixR
G
B

 =

Xr Xg Xb
Yr Yg Yb
Zr Zg Zb

−1 X
Y
Z

 . (2.67)

However, note that in many applications, measuring the tri-stimulus values for
the device is impossible as it requires difficult and expensive calibrations [54]. Usu-
ally, the primaries of the device are only known by the xy chromaticity coordinates,
a white point [xw, yw], and the maximum luminance Yw of the device. In this case,
it is possible to obtain the color transformation matrix by solving a 3 × 3 linear
system [54, 14].

Sensing colors. When it comes to imaging sensors, photosites are sensitive to
light across a broad spectrum, including nonvisible infrared, leading to the emission
of electrons. A solution to capture colors is to emulate the human eye by placing
a bandpass color filter in front of each photosite, selecting either the light’s red,
green, or blue component. The frequencies of light reaching the sensor depend
on the pixel’s location, following a specific pattern. One commonly used pattern
is the Bayer pattern, which is prevalent in most cameras. A visual representation
of this system is illustrated in Figure 2.31. However, this method means that each
pixel in the final color photograph needs to be reconstructed through a demosaicking
step to recover the missing color information. Consequently, approximately 2/3 of
the pixels in a colored image are not directly captured by the sensor but instead
reconstructed using interpolation algorithms.

Gamma encoding and gamma display. Colorspaces often use gamma correction,
a non-linear transform. Our eyes perceive light differently from cameras. Unlike
cameras, where twice the photons yield twice the signal (linear relationship), our
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Figure 2.31: Color Filter Array (CFA): Each pixel is covered by a colored filter based on a
specific pattern. Demosaicking algorithms are necessary to reconstruct the complete image
(including the two missing colors for each pixel). Consequently, the sensor does not capture
2/3 of RGB images.

eyes perceive twice the light as only slightly brighter, especially at higher light
intensities (non-linear relationship). Compared to cameras, we are more sensitive
to changes in dark tones than in bright tones. In general form, gamma encoding
has the form

Iout = AIγ
in. (2.68)

Gamma-encoded images efficiently store tones by aligning tonal levels with how
our eyes perceive them. Gamma encoding reduces the need for many bits to de-
scribe a given tonal range. Without this encoding, too many bits would be used
for brighter tones (where cameras are more sensitive) and too few for darker tones
(where cameras are less sensitive). Finally, it is important to note that to view a
gamma-encoded image accurately. Gamma correction is needed. This process con-
verts the image back into light from the original scene by applying inverse opera-
tion, aligning it with human vision. This correction is sometimes called gamma
correction. For further understanding, we recommend exploring additional re-
sources [14].
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2.3 Image Formation Model

In this section, we present a comprehensive formation model that takes into account
optics and imaging sensors, serving as a summary of the preceding sections. The
model utilized in this thesis is based on the seminal work by Elad et al. [55], which
has been widely employed in numerous super-resolution algorithms. We present
here a refined model, drawing inspiration from Delbracio’s work [31].

Analytical formation model. Let f represent the 2-D irradiance image of the 3D
world projected onto the image plane of an ideal pinhole camera. For each color
channel, the entire image formation process can be succinctly described by the fol-
lowing equation

y = S
{

g
(
( f ∗ hextrinsic) ◦ F

)
∗ hintrinsic

}
+ n,

where F is geometric distortion map on the focal plane into itself, hintrinsic is the blur-
ring kernel varying smoothly across the image plane that accounts for intrinsic blur
(such as the pixel integration, diffraction, lens aberrations), and hextrinsic is blurring
operator accounting for extrinsic blurring effects happening outside the camera (at-
mospheric turbulence). g is a monotone increasing function describing each pixel’s
non-linear response, the operator S is an ideal 2-D image sampler modeling the
sensor array, and last, n models sensor’s noise. Please note that we consider each
color channel independently. For instance, aberrations and diffraction are assumed
to vary for each band [7].

Such a model will prove useful in the subsequent chapters as it accounts for
degradations induced by non-ideal digital cameras, enabling the recovery of high-
quality images by solving inverse problems.
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2.4 Camera Imaging Pipeline

After describing the hardware aspects of digital cameras, we continue our tour by
focusing on the software and the classical processing techniques commonly used to
generate high-quality and aesthetically pleasing images.

In photography, the ISP (Image Signal Processor) is the specialized software
part responsible for processing the image data captured by a camera sensor. The
ISP performs various tasks to optimize the quality of the final image output. It
varies for each device depending on the task the device is specialized for, and each
manufacturer has its own pipeline. Making an exhaustive presentation impossible
to achieve. We review here the main stages.

Automatic camera settings. Before the image is taken, some parameters are usu-
ally automatically set in real-time [56]. Auto Exposure adjusts the exposure settings
(shutter speed, aperture, and ISO) to achieve proper exposure for the scene and de-
termines the amount of light that the sensor will collect. Auto Focus adjusts the lens
focus settings to ensure that the subject is in sharp focus. Auto white balance adjusts
the color of the image to ensure an accurate representation of colors by making
white objects appear neutral regardless of the lighting conditions. More on white
balancing later.

Frame acquisition. After the camera has been set, images can be taken. During
exposure, photons hitting the sensor accumulate electrons, which are converted
to a numerical signal. The acquired signal is generally a 10-12-bit signal of raw
sensor data, which needs to be processed by the camera processor to produce an
image interpretable by the human eye. The processing steps of a simplistic ISP are
depicted in Figure 2.32. We describe each of these steps below.

Linearization Demosaicking White Balance Color space conv Tonemapping/gammaraw value (dn) output image

Figure 2.32: Simplistic ISP for raw image processing.

Linearization. In general, the raw measurements are not in the [0, 1] range and
have an offset, called the black level) and a scaling, sometimes called white level. The
first step of the ISP generally consists of normalizing the measurements in the range
[0, 1] by applying affine transformations to each raw measurement as follows [57]

linear = clip
(

raw− black
saturation− black

, 0, 1
)

. (2.69)

Pixels below the black level and above the saturation level can be clipped but are
sometimes kept as it generally helps for denoising in the dark regions (clipping
complicates noise modeling in dark regions). Note that each Bayer channel may
have different black and saturation levels.

Lens shading correction. A lens shading correction is commonly employed to
address the radial decrease in light reaching the sensor caused by vignetting effects.
This non-uniformity is typically rectified using a calibrated shading mask [56].
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White balancing. White balancing involves correcting for color differences caused
by the lighting conditions in which the image was taken. White balancing adjusts
the colors in an image to ensure that white objects appear white without any un-
wanted color casts. The purpose is to imitate the chromatic adaptation ability18 of
the visual system to adjust to the dominant illumination of a scene [58].

White balance requires an estimate of the sensor’s response to the chromatic-
ity dominant light source [lr, lg, lb]. This response can be pre-calibrated for diverse
illumination conditions (sunlight, neon light, etc.) or estimated by an auto-white
balance algorithm [56]. Note that since only the chromaticity of the color mat-
ters, one of the channels, usually the green one, can be set to 1 [57]. Once scene
dominant illumination has been estimated, the image is white-balanced by dividing
each channel by the corresponding channel of the illuminant to emulate a neutral
illuminant as follows rwb

gwb
bwb

 =

1/lr 0 0
0 1/lg 0
0 0 1/lb

r
g
b

 . (2.70)

See Figure 2.33 for an illustration of white balance with different color temperatures.

Figure 2.33: White roses shot white balanced with various settings. The correct setting is in
the middle. Pictures were taken with a Pixel3a camera.

Demosaicking. Demosaicking is the process of reconstructing a full-color image
from the incomplete color information captured by a camera sensor equipped with
a filter array (introduced in Section 2.2.5). The demosaicking algorithm uses inter-
polation techniques to estimate the missing color values for each pixel, resulting in
a full-color image. It is somewhat counter-intuitive to realize that 2/3 of images are
generated by interpolation and do not correspond to true measurements.

Color correction. As briefly explained in Section 2.2.5, the spectral sensitivities
of the camera primaries (the red, green, and blue color filters) are specific to a
particular sensor. Because of this, it is necessary to convert these sensor-specific
RGB values to a device-independent color space, such as CIE XYZ colorspace or the
sRGB colorspace (one of the most commonly used colorspace). We can convert each
color pixel triplet linrgb = [r, g, b]> to the right colorspace by using the proper (and
normalized) color transformation matrix Acam→sRGB as follows

linsrgb = clip
(

Acam→sRGB · linrgb, 0, 1
)

. (2.71)

18Human eye can adapt to the chromaticity of the dominant light source, in particular to white
illuminant of various temperatures. If the light source is changed gradually, the human eye will adapt
and perceive the same color [14]. This is sometimes called color consistency in the literature.
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Tonemaping. Finally, tone mapping (TM) is an essential step in the image process-
ing pipeline. It helps ensure that the final image accurately represents the original
scene while maintaining a natural and visually appealing appearance. The TM al-
gorithm applies various techniques to adjust the brightness, contrast, and color sat-
uration to produce an image that looks visually pleasing and natural on the output
device. For instance, a simplistic tone mapper can apply a global gamma correction
to brighten dark regions. In contrast, more elaborate tone mappers mimic the hu-
man visual system by locally adapting brightness and contrast to the content of the
image [14, 45].

Figure 2.34: Left: Unprocessed image saved as jpg without tone-mapping, resulting in lost
details due to saturations or obscured areas in shadows. Right: Enhanced image following
the application of content-aware tone-mapping, locally adjusting brightness and contrast,
revealing previously hidden details in the raw image. Picture taken with a Pixel3a camera.
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2.5 Algorithms for Image Restoration

In the previous sections, we explored a minimalist ISP pipeline. Now, we delve into
the heart of this thesis, focusing on algorithms designed to enhance image quality.
While methods focusing on aesthetic improvements in photographs are a fascinat-
ing topic, we focus solely on ”quantitive” improvements in terms of resolution,
SNR, and dynamic range, which we denote as image restoration algorithms. Such
improvements -with no hallucinations19- hold value in scientific and medical appli-
cations as they enable capturing images with more information. Our exploration
begins with an introduction to inverse problems in computational imaging. We
then delve into data-driven approaches, often based on deep learning techniques.
Lastly, we show how to combine these two families of approaches to get the best
from both worlds. The core works of this thesis are based on this class of methods.

2.5.1 Inverse Problems

We consider the task of estimating an unknown high-quality20 image x ∈ Rn from
its noisy measurement(s) y ∈ Rm with a camera. We assume that we can represent
the camera’s behavior with a forward model, which is the operator characterizing
the response of the imaging sensor. See 2.3 for an example of a camera forward
model. It is common to address this problem with optimization. We refer to this as
an inverse problem.

Forward model. In computational imaging, a common assumption is that the sys-
tem can be represented by a linear operator A. The observed data can then be
modeled using the following linear degradation process:

y︸︷︷︸
observation

= A︸︷︷︸
forward

operator

x︸︷︷︸
image

+ n.︸︷︷︸
noise

, (2.72)

where y ∈ Rm represents the measured signal resulting from the matrix-vector mul-
tiplication with the system matrix Am×n and the original image x, along with the
noise term n. In practice, the matrix A is often very large, so it is more efficient to
compute the matrix-vector multiplication using operators such as local convolution
(in the case of a circulant matrix). This formulation is versatile and applicable to
various problems, including denoising, deconvolution, super-resolution, or inpaint-
ing [59].

Maximum a posteriori estimation. Even without any noise present, it’s common
for the number of observations n to be smaller than the number of unknowns m
(m < n), leading to an under-determined linear system. Consequently, a multitude
of solutions could yield accurate measurements. The task of determining which so-
lution to select can be addressed through Bayesian modeling. Let us consider p(x),

19In the literature, images enhanced with plausible yet incorrect details, not corresponding to the
true scene, are sometimes referred to as ”hallucinations.” Whether to seek or avoid such hallucinations
depends on the specific context and purpose.

20As it is not feasible to reconstruct a continuous representation of the ideal image x(u), we generally
limit ourselves in this thesis to the reconstruction of digital images with a finer spatial sampling. See [29]
for related discussions on this topic and for continuous modeling of the forward operator.
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a prior distribution on the high-resolution image x ∈ Rn. Then using Bayes’rule the
posterior distribution p(y|x) is given by

p(x|y) = p(y|x)p(x)
p(y)

∝ p(y|x)p(x). (2.73)

One solution to estimate x is to use maximum a posteriori (MAP) estimation [29] to
maximize p(x|y) according to xMAP = arg maxx∈Rn p(y|x)p(x). Taking the negative
log-likelihood, this maximization problem is equivalent to

xMAP = arg min
x∈Rn

L(x)︸︷︷︸
data-fitting term

+ λR(x)︸ ︷︷ ︸
image prior

, (2.74)

where R(x) ∝ − log p(x) and L(x) ∝ − log p(y|x). For additive white Gaussian
noise, the data-fitting term boils down to the least square L(x) = 1

2‖y−Ax‖2 [60].
We discuss in the next section how to choose the prior function R.

2.5.2 Image Priors

Image priors in image processing are statistical assumptions or constraints used to
regularize the solution of ill-posed inverse problems [60, 59]. In this section, we
present classical regularizing functions classically used for some inverse problems
in imaging.

Quadratic regularizer. In cases where the problem is over-constrained yet ill-
posed, a common and straightforward choice for regularization is the `2-norm on
the image, denoted as ‖x‖2

2. Another fundamental image prior encourages high-
resolution images x as spatially smooth signals [29]. This prior can be parameter-
ized as follows

R(x) = ‖Qx‖2
2, (2.75)

where Q ∈ Rn×n is a circulant matrix that implements a high-pass filter. A typical
selection for Q includes the spatial gradient of the image or the Laplacian oper-
ator [29]. Note that these priors offer the advantage of being relatively easy to
optimize.

Sparsity promoting regularizer. In the context of under-determined problems,
commonly used regularizers are the sparsity-promoting regularizers of the form:

R(x) = ‖Sx‖1, (2.76)

where S represents a suitable transform [60], and ‖ · ‖1 is the `1-norm, which en-
courages sparsity, see [59]. These regularizers aim to enforce the sparsity of the
image in specific domains, meaning they encourage the image to have many zero
or close-to-zero values in certain representations. This approach is valuable for pro-
moting simplicity or compressibility in the image, which is particularly useful in
cases where the underlying solution is expected to have sparse representations in
certain domains. Note that a direct sparsity measure such as `0 may also be used.
But it produces combinatorially hard problem. While 2.76 is convex.
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Total variation. A popular regularizer often used for image restoration problems
is the Total variation (TV). See [61]. The TV of an image is defined as the sum of
the absolute differences between neighboring pixel values. By minimizing the TV
of an image, the algorithm promotes sparse image gradients and hence enforces
the image to have sharp edges and flat regions. The isotropic version of the prior,
which is convex but not differentiable, is

RTV(x) =
N

∑
i=1

√
∇ux[i]2 +∇vx[i]2, (2.77)

where ∇ux and ∇ux are the spatial gradient in the u and v directions

2.5.2.1 Successful Image Priors for Denoising

While not directly applicable to regularizing inverse problems, we highlight two
crucial image priors that form the foundation of many modern denoising tech-
niques today, such as [62].

Sparse patch decomposition. Another effective way to leverage sparsity is sparse
coding. It consists in decomposing corrupted signals on the basis of elementary
signals [59]. This leverages the observation that natural images can be well recon-
structed with few atoms on a well-chosen basis. The key idea is that corrupted
signals are highly entropic and can’t be recovered with a sparse linear combination
of atoms. To perform image restoration of a noisy image, overlapping patches are
first extracted from, and each noisy patch is reconstructed by solving the Lasso with
p = 0 or p = 1

min
ai∈Rp

1
2
‖yi − Dai‖2

2 + λ‖ai‖p, (2.78)

D = [d1, . . . , dp] ∈ Rm×p is a basis of elementary signals called atoms, and ‖.‖p
induces sparsity. Atoms of the dictionary can be chosen, for example, from a DCT
basis or learned on a set of natural images with alternate optimization. See [59] for
more details on this topic.

Self-similar structures. The non-local means technique involves averaging akin
patches affected by independent and identically distributed (i.i.d.) noise with zero
mean. This averaging diminishes the noise variance while preserving the signal
integrity. The underlying concept is built on the observation that natural images
exhibit numerous instances of local self-similar patterns.

2.5.3 Optimization

Having introduced inverse problems in imaging, we are interested in minimizing
functions of the form

F(x) = f (x) + g(x), (2.79)

where f is a convex data-fitting term, and g is a regularizing function that is convex
and non-smooth. Proximal algorithms are typically used to minimize equation 2.79
when g is not smooth [63]. One of the most simple algorithms is the proximal gra-
dient descent (PGD or ISTA) which is summarized in Algorithm 1. ISTA alternates
between gradient steps with respect to f and evaluation of the proximal operator of
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Procedure 1 ISTA
f , g : Rn → R are convex, ∇ f L-Lipschitz and g non-smooth

Input: x0 ∈ Rn,
repeat

zk+1 ← xk − 1
L∇ f (xk)

xk+1 ← Proxg/L(zk+1)
until convergence

the non-smooth term. The proximal operator of g is defined as the unique solution
of

Proxγg(z) = arg min
x∈Rn

{
1
2
‖x− z‖2 + γg(x)

}
, (2.80)

for any convex function g : Rn → R. Proximal operators play a key role
in optimization and admit a closed form for many regularizers [63]. For ex-
ample, for the `1 norm, the proximal operator is the soft-thresholding operator
Sλ(u) = sign(u)max(|u| − λ, 0) which is easy and fast to compute.

However, the algorithm has a slow convergence [64] of O(1/k). An accelerated
version called FISTA was proposed in [64]. FISTA uses a slightly different gradient
step to obtain a better convergence rate O(1/k2). In practice, more elaborate solvers
are also used. We can cite the alternating direction method of multipliers (ADMM)
or Half Quadratic Splitting (HQS); see [63] for more details on this topic.

2.5.4 Deep Learning

Of course, deep learning has successfully addressed various inverse problems in
imaging. In its most straightforward form, this involves feeding a neural network
hΘ with corrupted measurements y and training it to generate clean images x using
a supervised approach. More formally, the objective is to minimize the discrepancy
between pairs of corrupted/clean data (y, x) ∼ P by minimizing

min
Θ

E(x,y)∼P L
(
x, hΘ(y)

)
. (2.81)

Here, L represents the loss function L : Rn × Rn → R+ used to quantify the
distortion between the reconstructed image and its corresponding ground truth.
The mean square error is frequently adopted for image restoration tasks.

Minimizing equation 3.7 is achieved in practice by minimizing the empirical
risk on a large set of training data {(y1, x1), · · · , (yN , xN)}. The neural network is
trained with backpropagation, fine-tuning its parameters Θ to minimize

min
Θ

1
n

N

∑
i=1
L
(
xi, hΘ(yi)

)
. (2.82)

Once training is finished, the model can be employed to infer clean images from
noisy measurements it hasn’t encountered during training.

Training pairs generation. Note that training pairs can be synthetically gen-
erated using the forward model. Achieving accurate simulations of real defects in
practical systems can be challenging, acting as a primary bottleneck that limits per-
formance on real images. We provide a concise overview of the advantages and
limitations of deep learning for image restoration over classical methods presented
earlier.
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Pros: Deep learning methods offer faster processing speeds with a single forward
pass, unlike iterative optimization-based methods that may require a prohibitive
number of iterations to converge. Second, deep learning somewhat simplifies the
design phase thanks to its data-driven approaches, sometimes requiring less tun-
ing and expert knowledge. With available training data, a working solution can be
quickly designed. Additionally, deep learning methods have the potential to pro-
duce images of superior quality compared to concurrent methods on some specific
problems.

Cons: A first significant limitation is the heavy reliance on data simulation qual-
ity, which significantly impacts the generated results. Additionally, deep neural
networks can produce undesirable artifacts, and unfortunately, the black-box na-
ture of deep learning makes it challenging, if not impossible, to control or detect
failure cases producing artefacts [56]. This also can lead to the model reconstruct-
ing fake details (hallucinations) that may be harmful (in scientific or medical imag-
ing). Lastly, the computational cost in terms of FLOPS (floating-point operations
per second) and/or memory requirements often exceeds the capacity of modern
embedded devices.

Pros (+) Cons (-)
Fast inference Computational cost (flops/memory)

Reconstruction quality Robustness
Data-driven (easy to design) Interpretability (artefacts detection/hallucinations)

Need for accurate data simulation

In the next Sections, we discuss how learned models can be enhanced by in-
tegrating physical models in computational imaging. The main advantages and
drawbacks will also be presented.

2.5.5 Plug and Play

Classical inverse methods discussed above require handcrafted priors and hyper-
parameters tuning (such as the regularization penalty λ). An essential property of
PGD or ADMM is the computation of the proximal operator, which can be viewed
as solving a denoising problem [65, 60]. This perspective led to the development of
Plug-and-Play methods, where the prox step is replaced by an image denoiser, such
as BM3D [62], or a trained deep neural network like DnCNN [65]. Consequently,
a denoiser DΘ can be employed to tackle various inverse problems. See Algo-
rithm 2 for a simplistic instance of this approach PnP-ISTA. Originally introduced

Procedure 2 PnP-ISTA

Input: x0 ∈ Rn, a black-box denoiser DΘ

repeat
zk+1 ← xk − γ∇ f (xk)

xk+1 ← DΘ(zk)
until convergence

for ADMM, the PnP framework has seen numerous variations and adaptations to
many algorithms. Some variations have convergence guarantees, established using
monotone operator theory [60]. Even when using black box CNN-based denoisers,
convergence guarantees can be obtained by training the CNN to satisfy contractive
conditions, for example through spectral norm techniques.
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Optimization problem. However, it is crucial to emphasize that PnP algorithms
with black-box denoisers in their simplest form do not necessarily solve an op-
timization problem like ADMM and FISTA algorithms unless specific constraints
are imposed on the denoiser, as the deep neural network may not have symmetric
Jacobian (we refer the reader to [66] for more details).

2.5.6 Deep Unfoldings

It is possible to go one step further and directly finetune the denoiser parameters Θ
to maximize performance for a specific restoration task by unfolding the iterative
algorithm. This is generally called ”deep unfolding” in the literature. By truncating
a PnP algorithm like PnP-ISTA to a certain number of iterations (K ≥ 1), it forms
a differentiable computational graph, which becomes a trainable model. Denoting
xK

Θ,γ(y) as the K-th iterate, the weights Θ of the denoiser DΘ, and the gradient step
γ, can be adjusted to minimize reconstruction errors on a training set of pairs com-
prising corrupted/ground-truth images. Therefore, the model’s training involves
solving the learning problem

min
Θ,γ

E(x,y)∼P L
(
x, xK

Θ,γ(y)
)
. (2.83)

Of course, numerous variations based on this formulation exist, and both PnP and
deep unfoldings have been adapted to various algorithms. In this discussion, how-
ever, we concentrate solely on the core concept.

iteration 1 iteration K

Figure 2.35: Deep unfolding of PnP-ISTA. Figure inspired from [60].

Deep unfoldings have been empirically shown to achieve better performance
compared to pure Plug-and-Play (PnP) models. This enhancement is generally at-
tributed to the fine-tuning of the denoiser, allowing it to correct artifacts induced
by the inverse solver for specific problems.

Furthermore, unlike purely deep learning approaches, hybrid methods often ne-
cessitate smaller models, making them particularly advantageous for integration on
embedded devices. Additionally, these methods demonstrate higher stability when
applied to real-world unseen images during inference, and they require fewer train-
ing examples to attain satisfactory performance. These advantages may arise from
the reduced workload on the neural network, which solves a somewhat simpler
problem. Below, we outline some advantages and drawbacks of such approaches:

Pros (+) Cons (-)
Compact DNNs (better portability) Harder to design

Reconstruction qual. matching larger DNNs Need for accurate data simulation
Robustness / fewer hallucinations
Faster training/ requiring less data

2.5.7 Bilevel Optimization

We presented PnP models as a convenient way for mixing data-driven learning
with model-based optimization, but we saw that PnP models generally do not have
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guarantees to solve an optimization problem. Another strongly connected approach
is the bi-level formulation, which mitigates that issue and therefore has better in-
terpretability. Bilevel optimization is a class of problems where one optimization
problem (the upper-level problem) depends on the solution of another optimiza-
tion problem (the lower-level problem). For instance, assuming that one is given
corrupted/clean pairs (xi, yi)i=1...n, one may consider the following bi-level objec-
tive

min
Θ

1
n

N

∑
i=0
L
(

xi, gΘ

(
z?
))

s.t. z? ∈ arg min
z∈Rp

hΘ(yi, z).
(2.84)

where z? is the result of some model-based optimization obtained by minimizing
some function hΘ. The reconstructed image gθ(z?) is compared to the ground-
truth yi through a loss function L : Rn × Rn → R+. That approach was, for
example, used in [59] in the context of sparse coding. In that case, hΘ is a Lasso
optimization problem, and z? is the optimal sparse code, encoding corrupted image
y, while g is chosen here as a linear reconstruction operator W.

Optimization

To solve such optimization problems, one needs to compute the gradient of the
trainable parameters with respect to the lower-level problem solution ∇Θz?, some-
times called the hyper-gradient in the literature. Different methods have emerged
in the literature; we summarize two techniques.

Implicit differentiation. The first approach consists in deriving the exact gradi-
ent ∇Θz? by leveraging the implicit function theorem. Assuming that h is twice
differentiable and that its optimal solution z?(Θ) uniquely exists. By the implicit
function theorem, the derivative of g with respect to Θ can be written as

∇Θz? = −∇Θ,zh∇−1
z,z h∇z? f , (2.85)

where f = 1
n ∑N

i=0 L
(

xi, gΘ

(
z?
))

. Note that a linear problem must be solved to
compute the gradient. A solution can be computed with a conjugate gradient algo-
rithm and only requires computing the Hessian vector product. This can be done
efficiently with double auto diff. Refer to [67] for more details on this topic.

Unrolled optimization. A commonly used approach is choosing an iterative
method for minimizing the lower problem hΘ and then computing an approximated
solution to the optimization problem after a truncated number of K iterations zK.
The unrolled iterations can be seen as a differentiable function of Θ and ∇ΘzK

can be computed with auto-diff. The concept of unrolled optimization concept was
initially introduced to accelerate the solution of the Lasso with an unrolled ISTA al-
gorithm called LISTA [68]. More formally, given an initial condition z0, the iterative
optimization algorithm solving the lower problem can be written as zt+1 = UΘ(zt).
We can view zK as a function of Θ by unrolling the iterative scheme for K iterations;
it can be shown with the chain rule

∇ΘzK =
K

∑
k=0
∇ΘU∇zk U · · · ∇zK−1U. (2.86)

See Figure 2.36 for an illustration and refer to [69] for more details on this topic.
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Forward pass

Backward pass

Figure 2.36: Unrolled optimization. Intermediate values need to be accumulated in memory
for the backward pass. Therefore, memory consumption grows linearly with the number of
unrolled iterations.

Discussions. Note that in the first case, there is a possible mismatch between the
approximated solution zK and the computed hypergradient ∇Θz? if the solver of
the lower problem has not fully converged. Due to inexact gradient information,
this mismatch may lead to instabilities during the training phase [67]. For this rea-
son, unrolled optimization may exhibit better stability during training if the solver
has not fully converged. But on the other hand, unrolled optimization has a large
memory footprint, as the intermediate results computed during the forward pass
must be stored in memory to accumulate gradients during the backward pass to
compute the full gradient ∇ΘzK. This may result in memory issues if the number
of iterations is too large. Note that solutions like truncated back propagation [70] or
checkpointing can be used for memory savings. See [69, 67] for related discussions.

Learned Inverse Problems (LIP). Note that with the bilevel framework, z? may
also be chosen as the solution of an inverse problem, and g is set to the identity. In
this fashion, the hyperparameters of the inverse problem, such as the regularization
strength -a key parameter to tune- can be adjusted end-to-end on a set of training
data. Furthermore, using unrolled optimization, it is also possible to tune the op-
timizer’s parameters (such as the gradient steps or a preconditioner’s parameters).
In this manuscript, we refer to this setting as trainable prior or learned inverse prob-
lems. LIP allows very compact models with optimized performance as it alleviates
the cumbersome task of hyperparameters tuning, often crucial, when designing an
optimization-based inverse solver.
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2.6 Burst Photography

To conclude our background section, we focus on a specific class of image restora-
tion algorithms using bursts of images rather than individual frames. Burst pho-
tography involves capturing multiple shots of the same scene in rapid succession,
usually within a few seconds, and with varying settings such as ISO, exposure, or
aperture. By increasing and diversifying the number of observations of the under-
lying scene, these algorithms can achieve significant improvements compared to
single-frame approaches.

Classical methods for processing bursts typically adopt a two-step approach,
encompassing (1) frame alignment and (2) merging of the frames. Nevertheless,
recent advances in deep learning have enabled simultaneous handling of both tasks,
occasionally removing the explicit need for frame alignment.

2.6.1 Registration

Image registration is the process of aligning images to ensure they are in the same
coordinate system. This is generally the first step of multi-frame methods.

2.6.1.1 Motion Parameterization

Various parameterizations can be chosen to represent motion induced by hand
tremors when taking the burst. Motion representation is a crucial aspect when
registering images. There is generally a tradeoff between the expressivity of the
motion model and its robustness.

Parametric motion. In the case of a parametric motion, the pixel u is assumed to
be transformed by a global transformation that is characterized by a small number
of parameters. We define the projective homography in homogeneous coordinates,
which has 8 degrees of freedom according tou′

v′

1

 ∼=
p11 p12 p13

p21 p22 p23
p31 p32 1

u
v
1

 = H
[

u
1

]
, (2.87)

where ∼= indicates equality up to a scale factor. Homographies can represent mo-
tions in case of a pure rotation of the camera with a rigid scene or a general motion
of the camera with translations but only for a plane.

Homographies given the plane. Suppose a plane π in 3d-space specified by
its coordinate in the world frame. Let us assume we have two cameras, C1 and C2,
and [R, t] is the relative motion between them. The two cameras C1, C2 look at a
point x on the plane π of normal vector n and of the distance d from the origin to
the plane, so that n>x + d = 0, see Figure 2.37 for an illustration. Let u and u′ be
the projection of x in the two image planes. The authors of [71] showed that the
coordinates of the two projections are related by a homography H, which can be
expressed as

H = K′
(

R− tn>

d

)
K−1, (2.88)

where K and K′ are the camera’s intrinsic parameter matrices. Note that when the
image region in which the homography is computed is small, or the image has been
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Figure 2.37: Homography induced by a plane: the ray corresponding to point u in camera
C1 is extended to meet the plane π in a point x in 3d-space. This point is projected to a point
x′ in the other image. The from u to u′ is the homography induced by the plane π. Figure
inspired from [71]

acquired with a large focal length, an affine transformation where the last row is
fixed to p31 = p3,2 = 0 is a valid model of image displacements.

Rigid transformation. In several cases, it is practical to use a transformation
with fewer degrees of freedom, such as an affine or rigid transformation. A rigid
transformation has 3 degrees of freedom and can be parametrized with three pa-
rameters p = [tu, tv, θ]> according to

M =

cos θ − sin θ tu
sin θ cos θ tv

0 0 1

 . (2.89)

A rigid transformation describes a motion composed of a rotation and translation.
This transform preserves the ratio of distance in images as well as angles between
lines.

A rigid transformation or even a homography may not be sufficient to represent
faithfully the motion of the camera on a rigid scene if the scene is not planar and
the motions induce parallax effects. A common way to solve this is to consider local
parametric transformation. Block parametric transformations involve dividing the
image sequence into small blocks and then estimating the motion of each block
between consecutive frames based on a set of parameters.

Optical flow. A more flexible approach is the use of a dense vector flow field to
describe motion according to [

u′

v′

]
=

[
u + mu(u)
v + mv(u)

]
. (2.90)

The displacements m(u) with m : R2 −→ R2 describe the motion from the image to
the reference image at the pixel position u. This has the advantage of modeling the
non-rigid motion of the scene or the motion of a projective surface on a non-planar
surface.

2.6.1.2 Registration Algorithms

Optimization methods. Optimization-based methods analyze images using the
first or higher-order derivatives of the image intensity function to estimate the trans-
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formation between them. One of the earliest image registration algorithms is the
Lucas-Kanade method [72, 73] that we present in the next paragraph.

The goal of this algorithm is to minimize a photometric similarity measure be-
tween a source image I2 and target image I1 with respect to parameters p ∈ Rp of
a transformation u′(u, p), where u = [u, v]> are the pixels coordinates. The algo-
rithm starts with an initial guess p and iteratively seeks the optimal increment on
the motion parameters by solving the non-linear least-square optimization problem:

min
∆p

∑
u∈Ω

∣∣∣I1(u)− I2
(
u′(u, p + ∆p)

)∣∣∣2 (2.91)

This a non-linear least-square optimization problem because even if the transforma-
tion is linear in p the pixel intensities are not linearly related to the pixel coordinates
vector u. This minimization problem is generally solved with a Gauss-Newton al-
gorithm, and the parameters are updated as p← p + ∆p until convergence, where

∆p = H−1 ∑
u∈Ω
∇I2

(
u′(u, p)

)
J(u, p)>

(
I1(u)− I2

(
u′(u, p)

))
, (2.92)

where, ∇I = [∇u I(u),∇v I(u)]> denotes the spatial gradient of the image and H is
the approximated hessian computed as

H = ∑
u∈Ω

(
∇I2

(
u′(u, p)

)
J(u, p)

)>(
∇I2

(
u′(u, p)

)
J(u, p)

)
. (2.93)

Multiscale algorithm. The Lucas-Kanade method assumes that the displace-
ment of image contents between two frames is small. To handle large motions, a
coarse-to-fine approach is typically employed. This involves creating a pyramid of
downsampled images. At the coarsest scale, the motion is initialized as zero, and
the motion is estimated. This initial solution is then iteratively refined as we move
to finer scales in the pyramid.

2.6.2 High Dynamic Range

In scenes with high dynamic range, a single exposure may fail to capture details in
both the highlights due to the sensor’s saturation and shadows due to low SNRs.
Taking multiple exposures is an effective way to extend the dynamic range and
increase SNR in photographs.

To estimate the radiance map of a scene with large dynamic, K images (I1, · · · IK)
are shot with different gains (g1, · · · gK) and exposures (∆t1, · · ·∆tK). Choosing
this set of exposure parameters optimally is a challenging problem called metering.
See [41] for a discussion on this problem. The frame k with normalized exposure
can be expressed as

Ĩk =
Ikgk
∆tk

. (2.94)

Assuming perfect alignment of the images (this is considered true for statics scenes
and for a burst of images captured on a tripod), Hasinoff et al. [41] derived the
minimum variance estimator of the radiant power Φ for each pixel. This blends the
K measurements with normalized exposures Ĩk. The estimate of the radiant power
Φ̂incident to the pixel at location j is then

Φ̂[j] = ∑k wk Ĩk[j]
∑k wk

. (2.95)
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The fusion weights depend on the exposure parameters (i.e., gain gk and exposure
time ∆tk) and are set to 0 in case of saturated pixels. See [41, 74] for a detailed
expression of these weights.

While the fusion process is relatively straightforward, the main challenge lies in
accurately aligning the frames. This difficulty arises due to the high heterogeneity
of frame content, including variations in saturation areas and significant differences
in SNR within dark zones. Consequently, aligning frames in this context becomes
highly challenging [56]. To tackle this challenge, several methods have been pro-
posed, including those suggested by Sen et al. [75], Hu et al. [76], and Gallo et
al. [77].

2.6.3 Super-Resolution

Burst super-resolution improves the resolution of images by combining multiple
images captured in quick succession. By taking a burst of photos of the same scene,
each with a slightly different viewpoint, the images can be aligned and merged
to create a final image with greater detail and higher resolution than any of the
individual images. Multi-frame super-resolution is commonly formulated as an
inverse problem as in [78, 28] and can be represented as follows

x̂ = arg min
x∈Rn

K

∑
k=1
‖DBWpi x− yi‖2 + λR(x). (2.96)

Here, x represents the high-resolution image, while yi corresponds to one of the
observed low-resolution frames from the burst. The operators B, D, and Wi are
responsible for blurring, decimation (possibly considering spectral decimation like
the Bayer pattern), and image deformations caused by slight camera displacements,
respectively. The function R : Rn → R acts as a regularization term, ensuring
desirable properties in the final high-resolution image.

One critical aspect of super-resolution lies in the quality of image registration,
as accurate alignment is essential for restoring high-frequency details. Particularly,
dealing with non-rigid motions poses challenges during frame alignment. To ad-
dress this, a common approach involves using a method to detect misalignments,
allowing the rejection of frames that haven’t been properly aligned. These algo-
rithms, often referred to as deghosting algorithms in the literature, play a significant
role in ensuring the overall success of the super-resolution technique.

There are alternate formulations of the problem. For instance, some methods
involve reconstructing high-resolution images in the Fourier domain or performing
non-uniform interpolation, as discussed in [79, 47]. Additionally, some approaches
incorporate motion estimation as an initial step, while others jointly estimate mo-
tion parameters along with the high-resolution image. For an extensive overview
of super-resolution algorithms, a recommended resource is the detailed taxonomy
provided in [29].

2.6.4 Low-Light Imaging

In low-light conditions, achieving sharp images is difficult. Night scenes require
long exposure times to capture enough photons to produce images with a suffi-
cient SNR. However, this extended exposure time can introduce motion blur when
images are captured by hand due to hand tremors.
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One solution to combat this problem is to capture a burst of rapid sequences
of sharp photographs with short exposures. These photos are aligned and merged,
resulting in a final image with improved SNR and reduced motion blur.

Once the frames are accurately aligned, a common approach is to employ the
empirical mean of the pixel values from the different frames as the clean image esti-
mator, considering the noise of each measurement to be independent. Additionally,
techniques can be applied to detect blurry frames and reject them from the merg-
ing process. Utilizing deghosting algorithms can also aid in the rejection of poorly
aligned frames, enhancing the quality of the produced image.

2.6.5 Focus Stacking

Burst photography can generate images with an extended depth of field by merging
multiple shots captured at different focus points. By capturing a burst of photos,
each focused at a slightly different distance from the camera. The individual images
can be combined to produce a final image with a greater depth of field. This tech-
nique is particularly advantageous in macro photography, where a shallow depth
of field can result in difficulties capturing the entire subject in focus.

However, aligning frames with different focus planes and integrating them into
the same frame coordinate poses important challenges similar to HDR registration.
Furthermore, due to the change of the lens-to-sensor distance, the varying focus
settings introduce scaling and other subtle geometric effects [80] that must be con-
sidered when registering the frames.
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Differentiable Non-Local Sparse
Model

Chapter abstract: Non-local self-similarity and sparsity principles have
proven to be powerful priors for natural image modeling. We propose a novel
differentiable relaxation of joint sparsity that exploits both principles and leads
to a general framework for image restoration which is (1) trainable end to end,
(2) fully interpretable, and (3) much more compact than competing deep learn-
ing architectures. We apply this approach to denoising, blind denoising, jpeg
deblocking, and demosaicking, and show that, with as few as 100K parameters,
its performance on several standard benchmarks is on par or better than state-
of-the-art methods that may have an order of magnitude or more parameters.

B. Lecouat, J. Ponce, J. Mairal. Fully Trainable and Interpretable Non-Local
Sparse Models for Image Restoration. In Proceedings of the European Conference
on Computer Vision (ECCV), 2020.
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3.1 Introduction

Demosaicking Denoising Jpeg deblocking

Figure 3.1: Effect of combining sparse and non-local priors for different reconstruction tasks.
Top: reconstructions with sparse prior only, exhibiting artefacts. Bottom: reconstruction with
both priors, artefact-free. Best seen in color by zooming on a computer screen.

The image processing community has long focused on designing handcrafted
models of natural images to address inverse problems, leading, for instance, to
differential operators [81], total variation [82], or wavelet sparsity [48] approaches.
More recently, image restoration paradigms have shifted towards data-driven ap-
proaches. For instance, non-local means [83] exploits self similarities, and many
successful approaches have relied on unsupervised methods such as learned sparse
models [84, 59], Gaussian scale mixtures [85], or fields of experts [86]. More power-
ful models such as BM3D [62] have also been obtained by combining several priors,
in particular self similarities and sparse representations [87, 62, 88, 89, 90].

These methods are now often outperformed by deep learning models, which are
able to leverage pairs of corrupted/clean images for supervised learning, in tasks
such as denoising [91, 92, 93, 94], demoisaicking [95, 96, 97], upsampling [98, 99],
or artefact removal [97]. Yet, they also suffer from lack of interpretability and the
need to learn a huge number of parameters. Improving these two aspects is one
of the key motivation of this paper. Our goal is to design algorithms that bridge
the gap in performance between earlier approaches that are parameter-efficient and
interpretable, and current deep models.

Specifically, we propose a differentiable relaxation of the non-local sparse model
LSSC [90]. The relaxation allows us to obtain models that may be trained end-to-
end, and which admit a simple interpretation in terms of joint sparse coding of
similar patches. The principle of end-to-end training for sparse coding was intro-
duced in [100], and later combined in [101] for super-resolution with variants of the
LISTA algorithm [102, 68, 103]. A variant based on convolutional sparse coding was
then proposed in [104] for image denoising, and another one based on the K-SVD
algorithm [105] was introduced in [106]. Note that these works are part of a vast
litterature on model-inspired methods, where the model architecture is related to
an optimization strategy for minimizing an objective, see [91, 107, 108].

In contrast, our main contribution is to extend the idea of differentiable algo-
rithms to structured sparse models [109], which is a key concept behind the LSSC,
CSR, and BM3D approaches. To the best of our knowledge, this is the first time
that non-local sparse models are shown to be effective in a supervised learning set-
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ting. As [106], we argue that bridging classical successful image priors within deep
learning frameworks is a key to overcome the limitations of current state-of-the-art
models. A striking fact is notably the performance of the resulting models given
their low number of parameters.

For example, our method for image denoising performs on par with the deep
learning baseline DnCNN [94] with 8x less parameters, significantly outperforms
the color variant CDnCNN with 6x less parameters, and achieves state-of-the-art
results for blind denoising and jpeg deblocking. For these two last tasks, relying on
an interpretable model is important; most parameters are devoted to image recon-
struction and can be shared by models dedicated to different noise levels. Only a
small subset of parameters can be seen as regularization parameters, and may be
made noise-dependent, thus removing the burden of training several large inde-
pendent models for each noise level. For image demosaicking, we obtain similar
results as the state-of-the-art approach RNAN [97], while reducing the number of
parameters by 76x. Perhaps more important than improving the PSNR, the prin-
ciple of non local sparsity also reduces visual artefacts when compared to using
sparsity alone, which is illustrated in Figure 3.1.

3.2 Preliminaries and Related Work

In this section, we introduce non-local sparse coding models for image denoising
and present a differentiable algorithm for sparse coding [68].

Sparse coding models on learned dictionaries. A simple approach for image de-
noising introduced in [105] consists of assuming that natural image patches can
be well approximated by linear combinations of few dictionary elements. Thus, a
clean estimate of a noisy patch is obtained by computing a sparse approximation.
Given a noisy image, we denote by y1, . . . , yn the set of n overlapping patches of
size
√

m ×√m, which we represent by vectors in Rm for grayscale images. Each
patch is then processed by solving the sparse decomposition problem

min
αi∈Rp

1
2
‖yi −Dαi‖2

2 + λ‖αi‖1, (3.1)

where D = [d1, . . . , dp] in Rm×p is the dictionary, which we assume given at the
moment, and ‖.‖1 is the `1-norm, which is known to encourage sparsity, see [59].
Note that a direct sparsity measure such as `0-penalty may also be used, at the cost
of producing a combinatorially hard problem, whereas (3.1) is convex.

Then, Dαi is a clean estimate of yi. Since the patches overlap, we obtain m
estimates for each pixel and the denoised image is obtained by averaging:

x̂ =
1
m

n

∑
i=1

RiDαi, (3.2)

where Ri is a linear operator that places the patch Dαi at the position centered on
pixel i on the image. Note that for simplicity, we neglect the fact that pixels close to
the image border admit less estimates, unless zero-padding is used.

Whereas we have previously assumed that a good dictionary D for natural im-
ages is available, the authors of [105] have proposed to learn D by solving a matrix
factorization problem called dictionary learning [110].
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Differentiable algorithms for sparse coding. ISTA [111] is a popular algorithm
to solve problem (3.1), which alternates between gradient descent steps with re-
spect to the smooth term of (3.1) and the soft-thresholding operator Sη(x) =
sign(x)max(0, |x| − η).

Note that such a step performs an affine transformation followed by the point-
wise non-linear function Sη , which makes it tempting to consider K steps of the
algorithm, see it as a neural network with K layers, and learn the corresponding
weights. Following such an insight, the authors of [68] have proposed the LISTA
algorithm, which is trained such that the resulting neural network learns to ap-
proximate the solution of (3.1). Other variants were then proposed, see [102, 103];
as [104], the one we have adopted may be written as

α
(k+1)
i = SΛk

[
α
(k)
i + C>

(
yi −Dα

(k)
i

)]
, (3.3)

where C has the same size as D and Λk in Rp is such that SΛk performs a soft-
thresholding operation with a different threshold for each vector entry. Then, the
variables C, D and Λk are learned for a supervised image reconstruction task.

Note that when C = ηD and Λk = ηλ1, where η is a step size, the recursion
recovers exactly the ISTA algorithm. Empirically, it has been observed that allow-
ing C 6= D accelerates convergence and could be interpreted as learning a pre-
conditioner for ISTA [103], whereas allowing Λk to have entries different than λη
corresponds to using a weighted `1-norm and learning the weights.

There have been already a few attempts to leverage the LISTA algorithm for
specific image restoration tasks such as super-resolution [101] or denoising [104],
which we extend in our paper with non-local priors and structured sparsity.

Exploiting self-similarities. The non-local means approach [83] consists of aver-
aging similar patches that are corrupted by i.i.d. zero-mean noise, such that av-
eraging reduces the noise variance without corrupting the signal. The intuition
relies on the fact that natural images admit many local self-similarities. This is a
non-parametric approach (technically a Nadaraya-Watson estimator), which can be
used to reduce the number of parameters of deep learning models.

Non local sparse models. The LSSC approach [90] relies on the principle of joint
sparsity. Denoting by Si a set of patches similar to yi according to some criterion,

we consider the matrix Ai = [αl ]l∈Si
in Rp×|Si | of corresponding coefficients.

LSSC encourages the codes {αl}l∈Si
to share the same sparsity pattern—that is, the

set of non-zero entries. This can be achieved by using a group-sparsity regularizer

‖Ai‖1,2 =
p

∑
j=1
‖Aj

i‖2, (3.4)

where Aj
i is the j-th row in Ai. The effect of this norm is to encourage sparsity

patterns to be shared across similar patches, as illustrated in Figure 3.2. It may be
seen as a convex relaxation of the number of non-zero rows in Ai, see [90].

Building a differentiable algorithm relying on both sparsity and non-local self-
similarities is challenging, as the clustering approach used by LSSC (or CSR) is
typically not a continuous operation of the dictionary parameters.
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Figure 3.2: (Left) sparsity pattern of codes with grey values representing non-zero entries;
(right) group sparsity of codes for similar patches. Figure from [90].

Deep learning models. In the context of image restoration, successful principles
for deep learning models include very deep networks, batch norm, and residual
learning [112, 94, 113, 97]. Recent models also use attention mechanisms to model
self similarities, which are pooling operations akin to non-local means. More pre-
cisely, a non local module has been proposed in [92], which performs weighed
average of similar features, and in [93], a relaxation of the k-nearest selection rule is
introduced for similar purposes.

Model-based methods. Unfolding an optimization algorithm to design an infer-
ence architecture is not limited to sparse coding. For instance [107, 114] propose
trainable architectures based on unrolled ADMM. The authors of [91, 112] propose
a deep learning architecture inspired from proximal gradient descent in order to
solve a constrained optimization problem for denoising; [115] optimize hyperpa-
rameters of non linear reaction diffusion models; [116] unroll an interior point algo-
rithm. Finally, Plug-and-Play [108] is a framework for image restoration exploiting
a denoising prior as a modular part of model-based optimization methods to solve
various inverse problems. Several works leverage the plug-in principle with half
quadratic spliting [117], deep denoisers [96], message passing algorithms [118], or
augmented Lagrangian [119].

3.3 Proposed Approach

We now present trainable sparse coding models for image denoising, follow-
ing [104], with a few minor improvements, before introducing differentiable re-
laxations for the LSSC method [90] . A different approach to take into account self
similarities in sparse models is the CSR approach [88]. We have empirically ob-
served that it does not perform as well as LSSC. Nevertheless, we believe it to be
conceptually interesting, and provide a brief description in the appendix.

3.3.1 Trainable Sparse Coding (without Self-Similarities)

In [104], the sparse coding approach (SC) is combined with the LISTA algorithm to
perform denoising tasks.1 The only modification we introduce here is a centering
step for the patches, which empirically yields better results.

1Specifically, [104] proposes a model based on convolutional sparse coding (CSC). CSC is a variant
of SC, where a full image is approximated by a linear combination of small dictionary elements. Un-
fortunately, CSC leads to ill-conditioned optimization problems and has shown to perform poorly for
image denoising. For this reason, [104] introduces a hybrid approach between SC and CSC. In our paper,
we have decided to use the SC baseline and leave the investigation of CSC models for future work.
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Figure 3.3: An illustration of the main inference algorithm for GroupSC. See Figure 3.4 for
an illustration of the self-similarity module.
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Figure 3.4: An illustration of the self-similarity module used in our GroupSC algorithm.

SC Model - inference with fixed parameters. Following the approach and nota-
tion from Section 3.2, the first step consists of extracting all overlapping patches
y1, . . . , yn. Then, we perform the centering operation for every patch

yc
i , yi − µi1m with µi ,

1
m

1>myi. (3.5)

The mean value µi is recorded and added back after denoising yc
i . Hence, low-

frequency components do not flow through the model. The centering step is not
used in [104], but we have found it to be useful.

The next step consists of sparsely encoding each centered patch yc
i with K steps

of the LISTA variant presented in (3.3), replacing yi by yc
i there, assuming the pa-

rameters D, C and Λk are given. Here, a minor change compared to [104] is the use
of varying parameters Λk at each LISTA step. Finally, the final image is obtained by
averaging the patch estimates as in (4.3), after adding back µi:

x̂ =
1
n

N

∑
i=1

Ri(Wα
(K)
i + µi1m), (3.6)

but the dictionary D is replaced by another matrix W. The reason for decoupling
D from W is that the `1 penalty used by the LISTA method is known to shrink
the coefficients αi too much. For this reason, classical denoising approaches such
as [105, 90] use instead the `0-penalty, but we have found it ineffective for end-to-
end training. Therefore, as in [104], we have chosen to decouple W from D.

Training the parameters. We now assume that we are given a training set of pairs
of clean/noisy images (x, y) ∼ P , and we minimize in a supervised fashion

min
Θ

E(x,y)∼P ‖x̂(y)− x‖2
2 , (3.7)

where Θ = {C, D, W, (Λk)k=0,1...K−1, κ, ν} is the set of parameters to learn and x̂ is
the denoised image defined in (3.6).
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Procedure 3 Pseudo code for the inference model of GroupSC.

1: Extract patches Y = [y1, . . . , yn] and center them with (3.5);
2: Initialize the codes αi to 0;
3: Initialize image estimate x̂ to the noisy input y;
4: Initialize pairwise similarities Σ between patches of x̂;
5: for k = 1, 2, . . . K do
6: Compute pairwise patch similarities Σ̂ on x̂;
7: Update Σ← (1− ν)Σ + νΣ̂;
8: for i = 1, 2, . . . , N in parallel do
9: αi ← ProxΣ,Λk

[
αi + C>(yc

i −Dαi)
]
;

10: end for
11: Update the denoised image x̂ by averaging (3.6);
12: end for

3.3.2 Differentiable Relaxation for Non-Local Sparse Priors

Self-similarities are modeled by replacing the `1-norm by structured sparsity-
inducing regularization functions. In Algorithm 4, we present a generic approach
to use this principle within a supervised learning approach, based on a similarity
matrix Σ, overcoming the difficulty of hard clustering/grouping patches together.
In Figure 4.1, we also provide a diagram of one step of the inference algorithm. At
each step, the method computes pairwise patch similarities Σ between patches of a
current estimate x̂, using various possible metrics that we discuss in Section 3.3.3.
The codes αi are updated by computing a so-called proximal operator, defined be-
low, for a particular penalty that depends on Σ and some parameters Λk. Practical
variants where the pairwise similarities are only updated once in a while, are dis-
cussed in Section 3.3.6.

Definition 1 (Proximal operator). Given a convex function Ψ : Rp→R, the proximal
operator of Ψ is defined as the unique solution of

ProxΨ[z] = arg min
u∈Rp

1
2
‖z− u‖2 + Ψ(u). (3.8)

The proximal operator plays a key role in optimization and admits a closed form
for many penalties, see [59]. Indeed, given Ψ, it may be shown that the iterations
αi ← ProxηΨ

[
αi + ηD>(yc

i −Dαi)
]

are instances of the ISTA algorithm [64] for
minimizing

min
αi∈Rp

1
2
‖yc

i −Dαi‖2 + Ψ(αi),

and the update of αi in Algorithm 4 simply extend LISTA to deal with Ψ. Note that
for the weighted `1-norm Ψ(u) = ∑

p
j=1 λj |u[j]|, the proximal operator is the soft-

thresholding operator SΛ introduced in Section 3.2 for Λ = (λ1, . . . , λp) in Rp, and
we simply recover the SC algorithm from Section 3.3.1 since Ψ does not depend on
the pairwise similarities Σ. Next, we present different structured sparsity-inducing
penalties that yield more effective algorithms.

3.3.2.1 Group-SC.

For each location i, the LSSC approach [90] defines groups of similar patches Si ,{
j = 1, . . . , n s.t. ‖yi − yj||22 ≤ ξ

}
for some threshold ξ. For computational reasons,
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LSSC relaxes this definition in practice, and implements a clustering method such
that Si = Sj if i and j belong to the same group. Then, under this clustering
assumption and given a dictionary D, LSSC minimizes

min
A

1
2
‖Yc −DA‖2

F +
N

∑
i=1

Ψi(A) with Ψi(A)=λi‖Ai‖1,2, (3.9)

where A=[α1, . . . , αN ] in Rm×N represents all codes, Ai =[αl ]l∈Si
, ‖.‖1,2 is the group

sparsity regularizer defined in (3.4), ‖.‖F is the Frobenius norm, Yc = [yc
1, . . . , yc

N ],
and λi depends on the group size. As explained in Section 3.2, the role of the Group
Lasso penalty is to encourage the codes αj belonging to the same cluster to share the
same sparsity pattern, see Figure 3.2. For homogeneity reasons, we also consider
the normalization factor λi = λ/

√
|Si|, as in [90]. Minimizing (3.9) is easy with the

ISTA method since we know how to compute the proximal operator of Ψ, which is
described below:

Lemma 1 (Proximal operator for the Group Lasso). Consider a matrix U and call
Z = Proxλ‖.‖1,2

[U]. Then, for all row Zj of Z,

Zj = max
(

1− λ

‖Uj‖2
, 0
)

Uj. (3.10)

Unfortunately, the procedure used to design the groups Si does not yield a
differentiable relation between the denoised image x̂ and the parameters to learn.
Therefore, we relax the hard clustering assumption into a soft one, which is able
to exploit a similarity matrix Σ representing pairwise relations between patches.
Details about Σ are given in Section 3.3.3. Yet, such a relaxation does not provide
distinct groups of patches, preventing us from using the Group Lasso penalty (3.9).

This difficulty may be solved by introducing a joint relaxation of the Group
Lasso penalty and its proximal operator. First, we consider a similarity matrix Σ
that encodes the hard clustering assignment used by LSSC—that is, Σij = 1 if j is
in Si and 0 otherwise. Second, we note that ‖Ai‖1,2 = ‖A diag(Σi)‖1,2 where Σi
is the i-th column of Σ that encodes the i-th cluster membership. Then, we adapt
LISTA to problem (3.9), with a different shrinkage parameter Λ

(k)
j per coordinate j

and per iteration k as in Section 3.3.1, which yields

B← A(k) + C>(Yc −DA(k))

A(k+1)
ij ← max

1−
Λ(k)

j

√
‖Σi‖1

‖(B diag(Σi)
1
2 )j‖2

, 0

Bij,
(3.11)

where the second update is performed for all i, j, the superscript j denotes the j-th
row of a matrix, as above, and Aij is simply the j-th entry of αi.

We are now in shape to relax the hard clustering assumption by allowing any
similarity matrix Σ in (3.11), leading to a relaxation of the Group Lasso penalty
in Algorithm 4. The resulting model is able to encourage similar patches to share
similar sparsity patterns, while being trainable by minimization of the cost (3.7).

3.3.3 Similarity Metrics

We have computed similarities Σ in various manners, and implemented the follow-
ing practical heuristics, which improve the computional complexity.
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Online averaging of similarity matrices. As shown in Algorithm 4, we use a con-
vex combination of similarity matrices (using νk in [0, 1], also learned by backprop-
agation), which provides better results than computing the similarity on the current
estimate only. This is expected since the current estimate x̂ may have lost too much
signal information to compute accurately similarities, whereas online averaging al-
lows retaining information from the original signal. We run an ablation study of
our model reported in appendix to illustrate the need of similarity refinements dur-
ing the iterations. When they are no updates the model perfoms on average 0.15 dB
lower than with 4 updates.

Semi-local grouping. As in all methods that exploit non-local self similarities in
images, we restrict the search for similar patches to yi to a window of size w× w
centered around the patch. This approach is commonly used to reduce the size of
the similarity matrix and the global memory cost of the method. This means that
we will always have Σij = 0 if pixels i and j are too far apart.

Learned distance. We always use a similarity function of the form Σij = e−dij ,
where dij is a distance between patches i and j. As in classical deep learning models
using non-local approaches [92], we do not directly use the `2 distance between
patches. Specifically, we consider

dij = ‖diag(κ)(x̂i − x̂j)‖2, (3.12)

where x̂i and x̂j are the i and j-th patches from the current denoised image, and κ
in Rm is a set of weights, which are learned by backpropagation.

3.3.4 Extension to Blind Denoising and Parameter Sharing

The regularization parameter λ of Eq. (3.1) depends on the noise level. In a blind
denoising setting, it is possible to learn a shared set of dictionnaries {D, C, W}
and a set of different regularization parameters {Λσ0 , . . . , Λσn} for various noise
intensities. At inference time, we use first a noise estimation algorithm from [120]
and then select the best regularization parameter to restore the image.

3.3.5 Extension to Demosaicking

Most modern digital cameras acquire color images by measuring only one color
channel per pixel, red, green, or blue, according to a specific pattern called the
Bayer pattern. Demosaicking is the processing step that reconstruct a full color
image given these incomplete measurements.

Originally addressed by using interpolation techniques [121], demosaicking has
been successfully tackled by sparse coding [90] and deep learning models. Most
of them such as [96, 97] rely on generic architectures and black box models that
do not encode a priori knowledge about the problem, whereas the authors of [95]
propose an iterative algorithm that relies on the physics of the acquisition process.
Extending our model to demosaicking (and in fact to other inpainting tasks with
small holes) can be achieved by introducing a mask Mi in the formulation for un-
observed pixel values. Formally we define Mi for patch i as a vector in {0, 1}m,
and M = [M0, . . . , MN ] in {0, 1}n×N represents all masks. Then, the sparse coding
formulation becomes

min
A

1
2
‖M� (Yc −DA)‖2

F +
N

∑
i=1

Ψi(A), (3.13)
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where � denotes the elementwise product between two matrices. The first updating
rule of equation (3.11) is modified accordingly. This lead to a different update which
has the effect of discarding reconstruction error of masked pixels,

B← A(k) + C>(M� (Yc −DA(k))). (3.14)

3.3.6 Practical variants and implementation

Finally, we discuss other practical variants and implementation details.

Dictionary initialization. A benefit of designing an architecture with a sparse
coding interpretation, is that the parameters D, C, W can be initialized with a clas-
sical dictionary learning approach, instead of using random weights, which makes
the initialization robust. To do so, we use SPAMS toolbox [122].

Block processing and dealing with border effects. The size of the tensor Σ grows
quadratically with the image size, which requires processing sequentially image
blocks. Here, the block size is chosen to match the size w of the non local window,
which requires taking into account two important details:

(i) Pixels close to the image border belong to fewer patches than those from the
center, and thus receive less estimates in the averaging procedure. When processing
images per block, it is thus important to have a small overlap between blocks, such
that the number of estimates per pixel is consistent across the image.

(ii) We also process image blocks for training. It then is important to take border
effects into account, by rescaling the loss by the number of pixel estimates.

3.4 Experiments

Original
image Ground truth Noisy image

σ = 25 CBM3D CDnCNN GroupSC
(ours)

Figure 3.5: Color denoising results for 3 images from the Kodak24 dataset. Best seen in color
by zooming on a computer screen. More qualitative results for other tasks are in appendix.

1We run here the model with the code provided by the authors online on the smaller training set
BSD400.
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Table 3.1: Blind denoising on CBSD68, training on CBSD400. Performance is mea-
sured in terms of average PSNR. SSIMs are in the appendix. Best is in bold, second
is underlined.

Noise
level

CBM3D[62] CDnCNN-B [94] CUNet[112] CUNLnet[112] SC GroupSC
- 666k 93k 93k 115k 115k

5 40.24 40.11 40.31 40.39 40.30 40.43
10 35.88 36.11 36.08 36.20 36.07 36.29
15 33.49 33.88 33.78 33.90 33.72 34.01
20 31.88 32.36 32.21 32.34 32.11 32.41
25 30.68 31.22 31.03 31.17 30.91 31.25

Table 3.2: Color denoising on CBSD68, training on CBSD400 for all methods except
CSCnet (Waterloo+CBSD400). Performance is measured in terms of average PSNR.
SSIMs are reported in the appendix.

Method Trainable Params Noise level (σ)
5 10 15 25 30 50

CBM3D [87] 7 - 40.24 - 33.49 30.68 - 27.36

CSCnet [104] 186k - - 33.83 31.18 - 28.00
CNLNet[91] - - - 33.69 30.96 - 27.64
FFDNET [113] 486k - - 33.87 31.21 - 27.96
CDnCNN [94] 668k 40.50 36.31 33.99 31.31 - 28.01
RNAN [97] 8.96M - 36.60 - - 30.73 28.35

SC (baseline) 119k 40.44 - 33.75 30.94 - 27.39
GroupSC (ours) 119k 40.58 36.40 34.11 31.44 30.58 28.05

Training details and datasets. In our experiments, we adopt the setting of [94],
which is the most standard one used by recent deep learning methods, allowing
a simple and fair comparison. In particular, we use as a training set a subset of
the Berkeley Segmentation Dataset (BSD) [127], called BSD400. We evaluate our
models on 3 popular benchmarks: BSD68 (with no overlap with BSD400), Kodak24,
and Urban100 [128] and on Classic5 for Jpeg deblocking, following [123, 129]. For
gray denoising and Jpeg deblocking we choose a patch size of 9× 9 and dictionary
with 256 atoms for our models, whereas we choose a patch size of 7× 7 for color
denoising and demosaicking. For all our experiments, we randomly extract patches
of size 56× 56 whose size equals the neighborhood for non-local operations and
optimize the parameters of our models using ADAM [130]. Similar to [104], we
normalize the initial dictionnary D0 by its largest singular value, which helps the
LISTA algorithm to converge. We also implemented a backtracking strategy that
automatically decreases the learning rate by a factor 0.5 when the training loss di-
verges. Additional training details can be found in the appendix for reproductibility
purposes.

Performance measure. We use the PSNR as a quality measure, but SSIM scores
for our experiments are provided in the appendix, leading to similar conclusions.

Grayscale Denoising. We train our models under the same setting as [94, 91,
92]. We corrupt images with synthetic additive gaussian noise with a variance
σ = {5, 15, 25, 50} and train a different model for each σ and report the performance
in terms of PSNR. Our method appears to perform on par with DnCNN for σ ≥ 10
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Table 3.3: Grayscale Denoising on BSD68, training on BSD400 for all methods
except CSCnet (Waterloo+BSD400). Performance is measured in terms of average
PSNR. SSIMs are reported in the appendix.

Method Trainable Params Noise Level (σ)
5 15 25 50

BM3D [87] 7 - 37.57 31.07 28.57 25.62
LSSC [90] 7 - 37.70 31.28 28.71 25.72
BM3D PCA [62] 7 - 37.77 31.38 28.82 25.80

TNRD [115] - - 31.42 28.92 25.97
CSCnet [104] 62k 37.84 31.57 29.11 26.24
CSCnet(BSD400) [104]2 62k 37.69 31.40 28.93 26.04
LKSVD [106] 45K - 31.54 29.07 26.13
NLNet [91] - - 31.52 29.03 26.07
FFDNet [113] 486k - 31.63 29.19 26.29
DnCNN [94] 556k 37.68 31.73 29.22 26.23
N3 [93] 706k - - 29.30 26.39
NLRN [92] 330k 37.92 31.88 29.41 26.47

SC (baseline) 68k 37.84 31.46 28.90 25.84
GroupSC (ours) 68k 37.95 31.71 29.20 26.17

Table 3.4: Jpeg artefact reduction on Classic5 with training on CBSD400. Perfor-
mance is measured in terms of average PSNR. SSIMs are reported in the appendix.

Quality
factor jpeg SA-DCT [123] TNRD[115] DnCNN-3 [94] SC GroupSC

10 27.82 28.88 29.28 29.40 29.39 29.61
20 30.12 30.92 30.12 31.63 31.58 31.78
30 31.48 32.14 31.47 32.91 32.80 33.06
40 32.43 33.00 - 33.75 33.75 33.91

Table 3.5: Demosaicking. Training on CBSD400 unless a larger dataset is specified
between parenthesis. Performance is measured in terms of average PSNR. SSIMs
are reported in the appendix.

Method Trainable Params Kodak24 BSD68 Urban100

LSSC 7 - 41.39 40.44 36.63

IRCNN [96] (BSD400+Waterloo [124]) - 40.54 39.9 36.64
Kokinos [125] (MIT dataset [126]) 380k 41.5 - -
MMNet [95] (MIT dataset [126]) 380k 42.0 - -
RNAN [97] 8.96M 42.86 42.61 -

SC (ours) 119k 42.34 41.88 37.50
GroupSC (ours) 119k 42.71 42.91 38.21

and performs significantly better for low-noise settings. Finaly we provide results
on other datasets in the appendix. On BSD68 the light version of our method runs
10 times faster than NLRN [92] (2.17s for groupSC and 21.02s for NLRN), see the
appendix for detailed experiments concerning the running time our our method
ans its variants.

Color Image Denoising We train our models under the same setting as [91,
94]; we corrupt images with synthetic additive gaussian noise with a variance
σ = {5, 10, 15, 25, 30, 50} and we train a different model for each variance of noise.
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For reporting both qualitative and quantitative results of BM3D-PCA [62] and
DnCNN [94] we used the implementation realeased by the authors. For the other
methods we provide the numbers reported in the corresponding papers. We report
the performance of our model in Table 3.2 and report qualitative results in Fig-
ure 3.5, along with those of competitive approaches, and provide results on other
datasets in the appendix. Overall, it seems that RNAN performs slightly better than
GroupSC, at a cost of using 76 times more parameters.

Blind Color Image Denoising. We compare our model with [112, 94, 62] and re-
port our results in Table 3.1. [112] trains two different models in the range [0,25]
and [25,50]. We compare with their model trained in the range [0,25] for a fair com-
paraison. We use the same hyperparameters than the one used for color denoising
experiments. Our model performs consistently better than other methods.

Demosaicking. We follow the same experimental setting as IRCNN [96], but we
do not crop the output images similarly to [96, 90] since [97] does not seem to
perform such an operation according to their code online. We compare our model
with sate-of-the-art deep learning methods [125, 95, 97] and also report the per-
formance of LSSC. For the concurrent methods we provide the numbers reported
in the corresponding papers. On BSD68, the light version of our method(groupsc)
runs at about the same speed than RNAN for demosaicking (2.39s for groupsc and
2.31s for RNAN). We observe that our baseline provides already very good results,
which is surprising given its simplicity, but suffers from more visual artefacts than
GroupSC (see Fig. 3.1). Compared to RNAN, our model is much smaller and shal-
lower (120 layers for RNAN and 24 iterations for ours). We also note that CSR
performs poorly in comparison with groupSC.

Compression artefacts reduction. For jpeg deblocking, we compare our approach
with state-of-the-art methods using the same experimental setting: we only restore
images in the Y channel (YCbCr space) and train our models on the CBSD400
dataset. Our model performs consistently better than other approaches.

3.5 Centralised Sparse Representation

A different approach to take into account self similarities in sparse models is the
CSR approach of [88]. This approach is easier to turn into a differentiable algorithm
than the LSSC method, but we have empirically observed that it does not perform
as well. Nevertheless, we believe it to be conceptually interesting, and we provide
a brief description below. The idea consists of regularizing each code αi with the
function

Ψi(αi) = ‖αi‖1 + γ‖αi − βi‖1, (3.15)

where βi is obtained by a weighted average of prevous codes. Specifically, given

some codes α
(k)
i obtained at iteration k and a similarity matrix Σ, we compute

β
(k)
i = ∑

j

Σij

∑l Σil
α
(k)
j , (3.16)

and the weights β
(k)
i are used in (3.15) in order to compute the codes α

(k+1)
i .

Note that the original CSR method of [88] uses similarities of the form Σij =

exp
(
− 1

2σ2 ‖Wαi −Wαj‖2
2

)
, but other similarities functions may be used.
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Even though [88] does not use a proximal gradient descent method to solve the
problem regularized with (3.15), the next proposition shows that it admits a closed
form, which is a key to turn CSR into a differentiable algorithm. To the best of our
knowledge, this expression is new; its proof is given in the appendix.

Proposition 1 (Proximal operator of the CSR penalty). Consider Ψi defined in (3.15).
Then, for all u in Rp,

ProxλΨi [u] = Sλ

(
Sλγ (u− βi − λ sign(βi)) + βi + λ sign(βi)

)
,

where Sλ is the soft-thresholding operator, see Figure 3.6.

Despite the apparent complexity of the for-
mula, it remains a continuous function of the
input and is differentiable almost everywhere,
hence compatible with end-to-end training.
Qualitatively, the shape of the proximal map-
ping has a simple interpretation. It pulls codes
either to zero, or to the code weighted average
βi.

Figure 3.6: ProxλΨi for various λ, γ, β

At each iteration, the similarity matrix is updated along with the codes βi. The
proximal operator can then easily be plugged into our framework. We reported
performance of the CSR approach in the main paper for grayscale denoising, color
denoising and demosaicking. Performance of the CSR approach are reported in
Tables 3.6, 3.7, 3.8. We observe that it performs significantly better than the baseline
SC but is not as effective as GroupSC overall.

Table 3.6: Color denoising on CBSD68, training on CBSD400 for all methods except
CSCnet (Waterloo+CBSD400). Performance is measured in terms of average PSNR.
SSIMs are reported in the appendix.

Method Trainable Params Noise level (σ)
5 10 15 25 30 50

CBM3D [87] 7 - 40.24 - 33.49 30.68 - 27.36

CSCnet [104] 186k - - 33.83 31.18 - 28.00
CNLNet[91] - - - 33.69 30.96 - 27.64
FFDNET [113] 486k - - 33.87 31.21 - 27.96
CDnCNN [94] 668k 40.50 36.31 33.99 31.31 - 28.01
RNAN [97] 8.96M - 36.60 - - 30.73 28.35

SC (baseline) 119k 40.44 - 33.75 30.94 - 27.39
CSR (ours) 119k 40.53 - 34.05 31.33 - 28.01
GroupSC (ours) 119k 40.58 36.40 34.11 31.44 30.58 28.05

3.6 Conclusion

We have presented a differentiable algorithm based on non-local sparse image mod-
els, which performs on par or better than recent deep learning models, while using
significantly less parameters. We believe that the performance of such approaches—
including the simple SC baseline—is surprising given the small model size, and
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Table 3.7: Grayscale Denoising on BSD68, training on BSD400 for all methods
except CSCnet (Waterloo+BSD400). Performance is measured in terms of average
PSNR. SSIMs are reported in the appendix.

Method Trainable Params Noise Level (σ)
5 15 25 50

BM3D [87] 7 - 37.57 31.07 28.57 25.62
LSSC [90] 7 - 37.70 31.28 28.71 25.72
BM3D PCA [62] 7 - 37.77 31.38 28.82 25.80

TNRD [115] - - 31.42 28.92 25.97
CSCnet [104] 62k 37.84 31.57 29.11 26.24
CSCnet(BSD400) [104]2 62k 37.69 31.40 28.93 26.04
LKSVD [106] 45K - 31.54 29.07 26.13
NLNet [91] - - 31.52 29.03 26.07
FFDNet [113] 486k - 31.63 29.19 26.29
DnCNN [94] 556k 37.68 31.73 29.22 26.23
N3 [93] 706k - - 29.30 26.39
NLRN [92] 330k 37.92 31.88 29.41 26.47

SC (baseline) 68k 37.84 31.46 28.90 25.84
CSR (ours) 68k 37.88 31.64 29.16 26.08
GroupSC (ours) 68k 37.95 31.71 29.20 26.17

given the fact that the algorithm can be interpreted as a single sparse coding layer
operating on fixed-size patches. This observation paves the way for future work for
sparse coding models that should be able to model the local stationarity of natural
images at multiple scales, which we expect should perform even better. We believe
that our work also confirms that model-based image restoration principles devel-
oped about a decade ago are still useful to improve current deep learning models
and are a key to push their current limits.

3.a Appendix

This supplementary material is organized as follows: In Section 3.a.1, we provide
implementation details that are useful to reproduce the results of our paper (note
that the code is also provided). In Section 3.a.2, we present additional quantita-
tive results that were not included in the main paper for space limitation reasons;
we notably provide the SSIM quality metric [131] for grayscale, color, and demo-
saicking experiments; the SSIM score is sometimes more meaningful than PSNR
(note that the conclusions presented in the main paper remain unchanged, except
for grey image denoising, where our method becomes either closer or better than
NLRN, whereas it was slightly behind in PSNR); we also present ablation studies
and provide additional baselines for demosaicking and denoising. Section 3.a.3 is
devoted to the proof of Proposition 1, and finally in Section 3.a.4, we present ad-
ditional qualitative results (which require zooming on a computer screen). Finally,
in section 3.a.5 we included Visualizations of parameters learned by our model to
provide better intuition regarding our approach.
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Table 3.8: Demosaicking. Training on CBSD400 unless a larger dataset is specified
between parenthesis. Performance is measured in terms of average PSNR. SSIMs
are reported in the appendix.

Method Trainable Params Kodak24 BSD68 Urban100

LSSC 7 - 41.39 40.44 36.63

IRCNN [96] (BSD400+Waterloo [124]) - 40.54 39.9 36.64
Kokinos [125] (MIT dataset [126]) 380k 41.5 - -
MMNet [95] (MIT dataset [126]) 380k 42.0 - -
RNAN [97] 8.96M 42.86 42.61 -

SC (ours) 119k 42.34 41.88 37.50
CSR (ours) 119k 42.25 - -
GroupSC (ours) 119k 42.71 42.91 38.21

3.a.1 Implementation Details and Reproducibility

Training details. During training, we randomly extract patches 56× 56 whose size
equals the window size used for computing non-local self similiarities. We apply a
mild data augmentation (random rotation by 90◦ and horizontal flips). We optimize
the parameters of our models using ADAM [130] with a minibatch size of 32. All
the models are trained for 300 epochs for denoising and demosaicking. The learning
rate is set to 6× 10−4 at initialization and is sequentially lowered during training
by a factor of 0.35 every 80 training steps, in the same way for all experiments.
Similar to [104], we normalize the initial dictionary D0 by its largest singular value,
which helps the LISTA algorithm to converge faster. We initialize the matrices C,D
and W with the same value, similarly to the implementation of [104] released by
the authors. 2 Since too large learning rates can make the model diverge (as for any
neural network), we have implemented a backtracking strategy that automatically
decreases the learning rate by a factor 0.8 when the loss function increases too
much on the training set, and restore a previous snapshot of the model. Divergence
is monitored by computing the loss on the training set every 20 epochs. Training
the GroupSC model for color denoising takes about 2 days on a Titan RTX GPU.

Accelerating inference. In order to make the inference time of the non-local mod-
els faster, we do not update similarity maps at every step: we update patch sim-
ilarities every 1/ f steps, where f is the frequency of the correlation updates. We
summarize in Table 4.9 the set of hyperparameters that we selected for the experi-
ments reported in the main tables.

Table 3.9: Hyper-parameters chosen for every task.

Experiment Color denoising Gray denoising Demosaicking Jpeg Deblocking

Patch size 7 9 7 9
Dictionary size 256 256 256 256
Nr epochs 300 300 300 300
Batch size 32 32 32 32
K iterations 24 24 24 24
Middle averaging 3 3 3 3
Correlation upd
frequency f 1/6 1/6 1/8 1/6

2The implementation of CSCnet [104] is available here https://github.com/drorsimon/CSCNet/.

https://github.com/drorsimon/CSCNet/
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3.a.2 Additional Quantitative Results and Ablation Studies

3.a.2.1 Results on Other Datasets and SSIM Scores

We provide additional grayscale denoising results of our model on the datasets
BSD68, Set12, and Urban100 in terms of PSNR and SSIM in Table 3.10. Then, we
present additional results for color denoising in Table 3.11, for demosaicking in
Table 3.10, and for jpeg artefact reduction in Table 3.12. Note that we report SSIM
scores for baseline methods, either because they report SSIM in the corresponding
papers, or by running the code released by the authors.

Table 3.10: Grayscale denoising results on different datasets. Training is performed
on BSD400. Performance is measured in terms of average PSNR (left number) and
SSIM (right number).

Dataset Noise BM3D
DnCNN

556k
NLRN
330k

GroupSC
68k

Set12
15 32.37/0.8952 32.86/0.9031 33.16/0.9070 32.85/0.9063
25 29.97/0.8504 30.44/0.8622 30.80/0.8689 30.44/0.8642
50 26.72/0.7676 27.18/0.7829 27.64/0.7980 27.14/0.7797

BSD68
15 31.07/0.8717 31.73/0.8907 31.88/0.8932 31.70/0.8963
25 28.57/0.8013 29.23/0.8278 29.41/0.8331 29.20/0.8336
50 25.62/0.6864 26.23/0.7189 26.47/0.7298 26.18/0.7183

Urban100
15 32.35/0.9220 32.68/0.9255 33.45/0.9354 32.72/0.9308
25 29.70/0.8777 29.91/0.8797 30.94/0.9018 30.05/0.8912
50 25.95/0.7791 26.28/0.7874 27.49/0.8279 26.43/0.8002

Table 3.11: Color denoising results on different datasets. Training is performed
on CBSD400. Performance is measured in terms of average PSNR (left number) or
SSIM (right number).

Dataset Noise
CDnCNN

668k
GroupSC

119k

Kodak24

15 34.84/0.9233 35.00/0.9275
25 32.34/0.8812 32.51/0.8867
50 29.15/0.7985 29.19/0.7993

CBSD68

15 33.98/0.9303 34.11/0.9353
25 31.31/0.8848 31.44/0.8917
50 28.01/0.7925 28.05/0.7974

Urban100

15 34.11/0.9436 34.14/0.9461
25 31.66/0.9145 31.69/0.9178
50 28.16/0.8410 28.23/0.8513

3.a.2.2 Inference Speed and Similarity Refinements

In table 4.10, we provide a comparison of our model in terms of speed. We compare
our model for demosaicking and color denoising with the methods NLRN. This
study shows how to balance the trade-off between speed and accuracy. Whereas
the best model in accuracy achieves 31.71dB in PSNR with about 30s per image, a
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Table 3.12: Jpeg artefact reduction on Classic5 with training on CBSD400. Perfor-
mance is measured in terms of average PSNR.

Quality
factor AR-CNN [129] TNRD[115] DnCNN-3 [94] GroupSC

10 29.04/0.7929 29.28/0.7992 29.40/0.8026 29.61/ 0.8166
20 31.16/0.8517 31.47/0.8576 31.63/0.8610 31.78/ 0.8718
30 32.52/0.8806 32.78/0.8837 32.91/0.8861 33.06/ 0.8959
40 33.34/0.8953 - 33.75/0.9003 33.91/ 0.9093

Table 3.13: Demosaicking results. Training on CBSD400 unless a larger dataset is
specified between parenthesis. Performance is measured in terms of average PSNR
(left) and SSIM (right).

Method Params Kodak24 BSD68 Urban100

IRCNN (BSD400+Waterloo) 107k 40.54/0.9807 39.96/0.9850 36.64/0.9743
GroupSC (CBSD400) (ours) 118k 42.71/0.9901 42.91/0.9938 38.21/0.9804

“light” version can achieve 31.67dB in only 2.35s per image. This ablation study
also illustrates the need of similarity refinements during the iterations. When they
are no updates the model perfoms on average 0.15 dB lower than with 4 updates.

Table 3.14: Inference time (s) per image / PSNR (in dB) for gray denoising task
with σ = 15, computed on BSD68. Inference time is measured using a Titan RTX
gpu.

Middle
averaging (6) fΣ̂

Stride between image blocks
s = 56 s = 48 s = 24 s = 12

7

∞ 1.30 / 31.29 1.75 / 31.57 6.00 / 31.58 22.57 / 31.59
12 1.41 / 31.36 1.85 / 31.64 6.57 / 31.66 24.44 / 31.66
8 1.51 / 31.37 2.90 / 31.65 7.06 / 31.68 26.05 / 31.68
6 1.59 / 31.38 2.15 / 31.65 7.48 / 31.68 27.60 / 31.69

3

∞ 1.30 / 31.29 1.75 / 31.57 6.00 / 31.58 22.57 / 31.59
12 1.45 / 31.36 1.95 / 31.65 6.82 / 31.66 25.40 / 31.67
8 1.63 / 31.38 2.17 / 31.66 7.61 / 31.68 27.92 / 31.70
6 1.77 / 31.39 2.35 / 31.67 8.25 / 31.69 30.05 / 31.71

NLRN 330k 23.02 / 31.88

3.a.2.3 Influence of Patch and Dictionary Sizes

We measure in Table 3.15 the influence of the patch size and the dictionary size
for grayscale image denoising. For this experiment, we run a lighter version of the
model groupSC in order to accelerate the training. The batch size was decreased
from 25 to 16, the frequency of the correlation updates was decreased from 1/6
to 1/8 and the intermediate patches are not approximated with averaging. These
changes accelerate the training but lead to slightly lower performances when com-
pared with the model trained in the standard setting. As can be seen in the table,
better performance can be obtained by using larger dictionaries, at the cost of more
computation. Note that all other experiments conducted in the paper use a dictio-
nary size of 256. Here as well, a trade-off between speed/number of parameters
and accuracy can be chosen by changing this default value.
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Table 3.15: Influence of the dictionary size and the patch size on the denoising per-
formance. Grayscale denoising on BSD68. Models are trained on BSD400. Models
are trained in a light setting to accelerate training.

Noise (σ) Patch size n=128 n=256 512

5
k=7 37.91 37.92 -
k=9 37.90 37.92 37.96
k=11 37.89 37.89 -

15
k=7 31.60 31.63 -
k=9 31.62 31.67 31.71
k=11 31.63 31.67 -

25
k=7 29.10 29.11 -
k=9 29.12 29.17 29.20
k=11 29.13 29.18 -

3.a.2.4 Number of Unrolled Iterations

We also investigated the impact of the depth of the model on the performance. To
do so, we conducted a denoising experiment using the light version of our model
with a model with various number of unrolled steps. When changing the depth
from K=12, to 36, we only measure a difference of 0.02dB.

Table 3.16: Influence of the number of unrolled iterations.Grayscale denoising on
BSD68. Models are trained on BSD400. Models are trained in a light setting to
accelerate training.

Model Unrolled iterations
SC 28.90 28.91 28.90
GroupSC (light) 29.10 29.12 29.12

3.a.3 Proof of Proposition

The proximal operator of the function Ψi(u) = ‖u‖1 + γ‖u − βi‖1 for u in Rp is
defined as

ProxλΨi [z] = arg min
u∈Rp

1
2
‖z− u‖2 + λ‖u‖1 + λγ‖u− βi‖1

The optimality condition for the previous problem is

0 ∈ O(
1
2
||z− u||22) + ∂(λ||u||1) + ∂(λγ||u− βi||1)

⇔ 0 ∈ u− z + λ∂||u||1 + λγ∂||u− βi||1
We consider each component separately. We suppose that βi[j] 6= 0, otherwise
Ψi(u)[j] boils down to the `1 norm. And we also suppose λ, γ > 0.

Let us examine the first case where u[j] = 0. The subdifferential of the `1 norm
is the interval [−1, 1] and the optimality condition is

0 ∈ u[j]− z[j] + [−λ, λ] + λγ sign(u[j]− βi[j])
⇔ z[j] ∈ [−λ, λ]− λγ sign(βi[j])
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Similarly if u[j] = βi[j]

z[j] ∈ βi[j] + λ sign(βi[j]) + [−λγ, λγ]

Finally let us examine the case where u[j] 6= 0 and u[j] 6= βi[j]: then, ∂||u||1 =
sign(u[j]) and ∂||u− βi||1 = sign(u[j]− βi[j]). The minimum u[j]∗ is obtained as

0 = u[j]− z[j] + λ sign(u[j]) + λγ sign(u[j]− βi[j])
⇔ u[j]∗ = z[j]− λ sign(u[j]∗)− λγ sign(u[j]∗ − βi[j])

We study separately the cases where u[j] > β[j], 0 < u[j] < β[j] and u[j] < 0
when βi[j] > 0 and proceed similarly when βi < 0. With elementary operations
we can derive the expression of z[j] for each case. Putting the cases all together we
obtain the formula.

3.a.4 Additional Qualitative Results

We show qualitative results for jpeg artefact reduction, color denoising, grayscale
denoising, and demosaicking in Figures 3.8, 3.9, 3.10, respectively.

Original
image Ground truth Jpeg ARCNN SC (ours) GroupSC

(ours)
Figure 3.7: Jpeg artefact reduction results for 2 images from the Classic5 dataset. Best seen
in color by zooming on a computer screen.

3.a.5 Parameters Visualization

We present in this section some visualizations of
the learned parameters of our introduced model
groupsc for a dnoising task. We reported in Fig-
ure 3.12 learned dictionaries D and W (model
trained with C = D). We observe that dic-
tionaries are coupled. We reported in Fig-
ure 3.13 the sequence of regularization param-
eters (Λk)k=0,1...K−1 for a denoising task, and
(Λσ0 , . . . , Λσn). for blind denoising. Finally, we
reported in Figure 3.11 the learned weights κ of
the gaussian kernel for comparing patches.

Figure 3.11: Weights κ for com-
paring patches.
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Original
image Ground truth Noisy image

σ = 25 CBM3D CDnCNN GroupSC
(ours)

Figure 3.8: Color denoising results for 3 images from the Kodak24 dataset. Best seen in color
by zooming on a computer screen. Artefact reduction compared to CDnCNN can be seen in
the top and bottom pictures (see in particular the flower’s pistil).

Original
image Ground truth Noisy image

σ = 25 BM3D DnCNN GroupSC
(ours)

Figure 3.9: Grey denoising results for 3 images from the BSD68 dataset. Best seen by zooming
on a computer screen. GroupSC’s images are slightly more detailed than DnCNN on the top
and middle image, whereas DnCNN does subjectively slightly better on the bottom one.
Overall, these two approaches perform similarly on this dataset.

Original
image Ground truth Corrupted SC IRCNN GroupSC

(ours)
Figure 3.10: Color denoising results for 3 images from the Urban100 dataset. Best seen in
color by zooming on a computer screen. On the three images, our approach groupSC exhibits
significantly less artefacts than IRCNN and our baseline SC.
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D W

Figure 3.12: Learned dictionnaries of groupSC for denoising.

Sequence of regularization parameters
Λi of a non-blind models.

Set of regularization parameters
(Λσ0 , . . . , Λσn )

of a blind model.

Figure 3.13: Learned regularization parameters of groupSC for denoising and blind denois-
ing. Models are trained on BSD400.



Chapter 4

A Framework for Designing Trainable
Priors

Chapter abstract:
We introduce a general framework for designing and training neural net-

work layers whose forward passes can be interpreted as solving non-smooth
convex optimization problems, and whose architectures are derived from an
optimization algorithm. We focus on convex games, solved by local agents
represented by the nodes of a graph and interacting through regularization
functions. This approach is appealing for solving imaging problems, as it al-
lows the use of classical image priors within deep models that are trainable end
to end. The priors used in this presentation include variants of total variation,
Laplacian regularization, bilateral filtering, sparse coding on learned dictionar-
ies, and non-local self similarities. Our models are fully interpretable as well as
parameter and data efficient. Our experiments demonstrate their effectiveness
on a large diversity of tasks ranging from image denoising and compressed
sensing for fMRI to dense stereo matching.

B. Lecouat, J. Ponce, J. Mairal. A Flexible Framework for Designing Trainable
Priors with Adaptive Smoothing and Game Encoding. In Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS), 2020.
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4.1 Introduction

Despite the undeniable successes of deep learning in domains as varied as im-
age processing [94] and recognition [132], natural language processing [133],
speech [134] or bioinformatics [135], feed-forward neural networks are often ma-
ligned as being “black boxes” that, except perhaps for their top classification or
regression layers, are difficult or even impossible to interpret. In imaging applica-
tions, for example, the elementary operations typically consist of convolutions and
pointwise nonlinearities, with many parameters adjusted by backpropagation, and
no obvious functional interpretation.

In this paper, we consider instead network architectures explicitly derived from
an optimization algorithm, and thus interpretable from a functional point of view.
The first instance of this approach we are aware of is LISTA [68], which provides
a fast approximation of sparse coding. Yet, we are not content to design an ar-
chitecture that provides a fast approximation to a given optimization problem, but
we also want to learn a data representation pertinent for the corresponding task.
This yields an unusual machine learning paradigm, where one learns the parame-
ters of a parametric objective function used to represent data, while designing an
optimization algorithm to minimize it efficiently.

Even though interpretability is not always necessary to achieve good prediction,
this point of view, sometimes called algorithm unrolling [118, 136], has proven suc-
cessful for solving inverse imaging problems, providing effective and parameter-
efficient models. This approach allows the use of domain-specific priors within
trainable deep models, leading to a large number of applications such as com-
pressive imaging [107, 114], demosaicking [1], denoising [1, 106, 104], and super-
resolution [101] .

However, existing approaches are often limited to simple image priors such
as sparsity induced by the `1-norm [104], or differentiable regularization func-
tions [112], and a general algorithmic framework for combining complex, possibly
non-smooth, regularization functions is still missing. Our paper addresses this issue
and is able to leverage a large class of image priors such as total variation [82], the
`1-norm, structured sparse coding [90], or Laplacian regularization, where local op-
timization problems interact with each others. The interaction can be local among
direct neighbors on an image grid, or non-local, capturing for instance similarities
between spatially distant image patches [83, 62].

In this context, we adopt a more general and flexible point of view than the
standard convex optimization paradigm, and consider formulations to represent
data based on non-cooperative games [137] potentially involving non-smooth terms,
which are tackled by using the Moreau-Yosida regularization technique [138, 139].
Unrolling the resulting optimization algorithm results in a network architecture that
can be trained end-to-end and capture any combination of the domain-specific pri-
ors mentioned above. This approach includes and improves upon specific trainable
sparse coding models based on the `1-norm for example [104, 101]. More impor-
tantly perhaps, it can be used to construct several interesting new image priors:
In particular, we show that a trainable variant of total variation and its non-local
variant based on self similarities is competitive with the state of the art in imaging
tasks, despite using up to 50 times fewer parameters, with corresponding gains in
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speed. We demonstrate the effectivness and the flexibility of our approach on sev-
eral imaging tasks, namely denoising, compressed fMRI reconstruction, and stereo
matching.

Summary of our contributions. First, we provide a new framework for building
trainable variants of a large class of domain-specific image priors. Second, we show
that several of these priors match or even outperform existing techniques that use
a much larger number of parameters and training data. Finally, we present a set of
practical tricks to make optimization-driven layers easy to train.

4.2 Background and Related Work

Classical image priors. Inverse imaging problems are often solved by minimizing
a data fitting term with respect to model parameters, regularized with a penalty that
encourages solutions with a particular structure. In image processing, the commu-
nity long focused on designing handcrafted priors such as sparse coding on learned
dictionaries [105, 59], diffusion operators [81], total variation [82], and non-local self
similarities [83], which is a key ingredient of successful restoration algorithms such
as BM3D [62]. However these methods are now often outperformed by deep learn-
ing models [92, 94, 113], which leverage pairs of corrupted/clean training images
in a supervised fashion.

Bilevel optimization. A simple method for mixing data representation learning
with optimization is to use a bi-level formulation [100]. For instance, assuming that
one is given pairs (xi, yi)i=1...n of corrupted/clean signals with xi and yi in Rm, one
may consider the following bi-level objective

min
θ∈Θ,W∈Rm×p

1
n

n

∑
i=1

L(yi, Wα?
θ(xi)) where α?

θ(xi) ∈ arg min
α∈Rp

hθ(xi, α), (4.1)

where θ is a set of model parameters, Wα?
θ(xi) is a prediction which is compared to

yi through a loss function L : Rm ×Rm → R+, and the data representation α?
θ(xi)

in Rp is obtained by minimizing some function hθ. Note that for simplicity, we
have considered here a multivariate regression problem, where given a signal x in
Rm, we want to predict another signal y in Rm, but this formulation also applies to
classification problems. It was first introduced for sparse coding in [100, 140] and it
has recently been extended to the case when α?

θ(xi) is replaced by an approximate
minimizer of hθ.

Unrolled algorithms. A common approach to solving (4.1) consists in choosing
an iterative method for minimizing hθ and then define α?

θ(xi) as the output of the
optimization method after K iterations. The sequence of operations performed by
the optimization method can be seen as a computational graph and ∇θz?θ can be
computed by automatic differentiation. This often yields neural-network-like com-
putational graphs, which we call optimization-driven layers. Such architectures have
found multiple applications such as training of conditional random fields [141], sta-
bilization of generative adversarial networks [142], structured prediction [143], or
hyper-parameters tuning [144]. For image restoration, various optimization prob-
lems have been explored including for example sparse coding [1, 104, 114], non
linear diffusion [115] and differential operator regularization [112]. Many inference
algorithms have been investigated including proximal gradient descent [112, 104],
ADMM [118], half quadratic spliting [117], or augmented Lagrangian [119].
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4.3 A General Framework for Learning Optimization-Driven
Layers

4.3.1 Proposed Approach
We adopt a more general point of view
than (4.1), where we assume that in-
put signals admit a local “patch” struc-
ture (e.g., rectangular image regions) and
the data representation encodes individ-
ual patches. Assuming that there are
m patches in x, we denote by Z?(x) =
[z?1(x), . . . , z?m(x)] in Rp×m the representa-
tion of x and by z?j (x) the representation
of patch j (we omit the dependency on
the model parameters θ for simplicity). In
imaging applications and as in previous
models [104], Z?(x) can be seen as a fea-
ture map akin to that of a convolutional
neural network with p channels.

Pix

z?i

Z?

x

Figure 4.1: Our models encode locally
an input feature vector. The local opti-
mal solutions z?j interact trough the reg-

ularization function ψ
j
θ(Z).

Encoding with non-cooperative convex games. Concretely, given a signal x, we
denote by Pjx the patch of x centered at position j, where Pj is a linear patch extrac-
tion operator, and we define the optimal encoding Z?(x) of x as a Nash equilibrium
of the set of problems

min
αj∈Z

hθ(Pjx, αj) + ψ
j
θ(Z) for j = 1, . . . , m, (4.2)

where hθ is a a convex reconstruction objective for each patch, parametrized by θ,
ψ

j
θ is a convex regularization function encoding interactions between the variable

zj and the remaining ones zl for l 6= j, and Z is a convex subset of Rp. When Z is
compact, the problem is a specific instance of a non-cooperative convex game [137],
which is known to admit at least one Nash equilibrium—that is, a solution such
that one of the objectives in (4.2) is optimal with respect to its variable zj when the
other variables zl for l 6= j are fixed. The conditions under which an optimization
algorithm is guaranteed to return such an equilibrium point are well studied, see
Section 4.3.3, and in many situations the compactness of Z is not required, as also
observed in our experiments where we choose Z = Rp. For instance, in several
practical cases, (4.2) can be solved by minimizing the sum of m convex terms, a
setting called a potential game, which boils down to a classical convex optimization
problem.

4.3.2 Application of our Framework to Inverse Problems
In this section, we show how to leverage our optimization-driven layers for imag-
ing. For the sake of clarity we choose to narrow down the scope of this presentation
to imaging, even though our method is not limited to this single application: differ-
ent modalities including for example genomic/graph data could benefit from our
methodology.

Examples of models hθ. We consider two cases in the rest of this presentation:
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Z?(x, θ) ŷ(x, θ,W)linear reconstruc-
tion

X
optimization layerpatch extraction

x

Figure 4.2: Architecture of our trainable models for image restoration.

• Pixel reconstruction: hθ(Pjx, zj) = (xj − zj)
2, where xj is the pixel j of x and zj

is a scalar, corresponding to patches of size q = 1× 1 and p = 1.

• Patch encoding on a dictionary: hθ(Pjx, zj) = ‖Pjxj −Dzj‖2, where D in Rq×p is
a dictionary, q is the patch size, and p is the number of dictionary elements.
This is a classical model where patch j is approximated by a linear, often
sparse, combination of dictionary elements [105].

Only the second choice involves model parameters D (represented by θ). These two
loss functions are common in image processing [105], but other losses may be used
for other modalities.

Linear reconstruction with a dictionary. Assuming that y and x have the same
size m for simplicity, predicting y from a feature map Z?(x) is typically achieved
by using a learned dictionary matrix W in Rq×p where q is the patch size. Then,
Wz?j (x)

1 can be interpreted as a reconstruction of the j-patch of y . Since the patches
overlap, we obtain q estimators for every pixel, which can be combined by averaging
(neglecting border effects below for simplicity), yielding the prediction

ŷ(x, θ, W) =
1
q

m

∑
j=1

P>j Wz?j (x), (4.3)

where P>j is the linear operator that places a patch of size q at position j in a signal
of dimension m. Patch averaging is a classical operation in patch-based image
restoration algorithms, see [105], which can be interpreted in terms of transposed
convolution2 and admits fast implementations on GPUs.

Learning problem. For image restoration, given training pairs of corrupted /
clean images {xi, yi}i=1,...,n, we consider the regression problem

min
θ∈Θ,W∈Rq×p

‖yi − ŷ(xi, θ, W)‖2 where ŷ(xi) is defined in (4.3). (4.4)

Examples of regularization functions ψ
j
θ. Our framework allows the use of sev-

eral regularization functions, which are presented in the table 4.1 below. We assume
that the patches are nodes in a graph, and denote by Nj the set of neighbors of the
patch j. For natural images, the graph may be a two-dimensional grid with edge
weights aj,k that depend on the relative position of the patches j and k, which we de-
note by aj–k, but it may also be a non-local graph based on some similarity function
as in [1, 92]. Concretely, we can consider:

• the distance dj,k
NL = ‖diag(κ)(Pjx − Pkx)‖2 between patches j and k of the

image x, where κ in Rq is a set of parameters to learn, and q is the patch size,

and we define normalized weights aj,k
NL = e−dj,k

NL /∑l∈Nj
e−dj,k

NL .

1We employ a debiasing dictionary W 6= D to improve the quality of the reconstructions. Debiaising
is commonly used when dealing with `1 penalty which is known to shrink the coefficients Z too much.

2torch.nn.functionnal.conv2D transpose on PyTorch [145].
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• or a distance inspired from the bilateral filter [146]. In that case we de-

fine the distance dj,k
BL =

‖xi−xj‖2

2σ2
d

+ ‖i−j‖2

2σ2
r

between pixels on a local win-

dow Nj centered around pixel j, and we define again normalized weights

aj,k
BL = e−dj,k

BL /∑l∈Nj
e−dj,k

BL .

Table 4.1: A non-exhaustive list of regularization functions ψθ covered by our frame-
work.

ψ
j
θ(Z) Model parameters

Laplacian ∑k∈Nj
aj–k‖zj − zk‖2 weights in R|N |

Non-local Laplacian ∑k∈Nj
aj,k

NL‖zj − zk‖2 κ in Rq

Bilateral filter (BF) ∑k∈Nj
aj,k

BL‖zj − zk‖2 σd ∈ R and σr ∈ R

Total variation (TV) ∑k∈Nj
aj–k‖zj − zk‖1 weights in R|N |

Non-local total variation (NLTV) ∑k∈Nj
aj,k

NL‖zj − zk‖1 κ in Rq

Bilateral TV (BLTV) ∑k∈Nj
aj,k

BL‖zj − zk‖1 σd ∈ R and σr ∈ R

Weighted `1-norm (sparse coding) ∑
p
l=1 λl |zj[l]| λ in Rp

Non-local group regularization ∑
p
l=1 λl

√
∑k∈Nj

aj,kzk [l]2 λ in Rp and κ in Rq

Variance reduction ‖Wzj − Pj ŷ‖2 with ŷ from (4.3) W from (4.3)

Novelty of the proposed formulation and relation to previous work.

• Total variation: to the best of our knowledge, the basic anisotropic TV
penalty [61] does not seem to appear in the literature on unrolled algorithms
with end-to-end training. Note also that our TV variant allows learning non-
symmetric weights aj,k 6= ak,j, leading to a non-cooperative game that goes
beyond the classical convex optimization framework typically used with the
TV penalty.

• Non-local TV: the non-local TV penalty presented above is based on a classical
formulation [147], but can be incorporated within a trainable deep network
with non-symmetric weights.

• Bilateral filtering: the bilateral filter and its TV variant implemented in this
paper are based on classical formulations [146, 148]. But they have not, to the
best of our knowledge, been implemented as trainable priors.

• Sparse coding and variance reduction: the weighted `1-norm combined with the
patch encoding loss hθ yields a sparse coding formulation (SC) that has been
well studied within optimization-driven layers [106, 104]. Yet, the codes zj
in the SC setup are obtained by solving independent optimization problems,
which has motivated by Simon and Elad [104] to propose instead a Convo-
lutional Sparse Coding model (CSC), where the full image is approximated
by a linear combination of small dictionary elements. Unfortunately, as noted
in [104], CSC leads to ill-conditioned optimization problems, making a hy-
brid approach between SC and CSC more effective. Our paper proposes an
alternative solution combining the weighted `1-norm regularization with a
variance reduction penalty, which forces the codes zj to reach a consensus
when reconstructing the image ŷ. Our experiments show that this approach
outperforms [104] for image denoising.
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Procedure 4 Pseudocode of the general training procedure for image restoration

1: Sample a minibatch of pairs of corrupted/clean images {(x0, y0), · · · , (xK , yK)};
2: Extract overlapping patches of corrupted images to form tensors Xi = [P1xi, · · · , Pnxi];
3: for t = 1, 2, . . . , K do . Compute an approximate Nash equilibrium Z? of the convex

games
4: Zt+1 ← Zt − ηt Hθ(Zt, X);
5: end for
6: Approximate clean images by linear reconstruction ŷ = 1

q ∑m
j=1 P>j Wz?j (X, θ);

7: Compute the `2 reconstruction loss ‖y− ŷ(x, θ, W)‖2
2 on the minibatch;

8: Compute an estimate of the gradients wrt. (θ, W) with auto-diff;
9: Update trainable parameters (θ, W) with Adam;

• Non-local group regularization: This regularization function corresponds to a
soft variant of the Group Lasso penalty [149], which encourages similar
patches to share similar sparsity patterns (set of non-zero elements of the
codes zj). It was originally used in [90] and was recently revisited within
optimization-driven layers with an heuristic algorithm [1]. Our paper pro-
vides a better justified algorithmic framework as well as the ability to combine
this penalty with other ones.

4.3.3 Differentiability and End-to-end Training

In this section we adress end-to-end training of the optimization-driven layers.
Given pairs of training data {xi, yi}i=1,...,n, we consider the learning problem

min
θ∈Θ

1
n

n

∑
i=1

L (yi, gθ (α
?
θ(xi))) , (4.5)

where gθ is a differentiable function. We consider the approximation where the
codes z?j (x) are obtained as the K-th step of an optimization algorithm for solving
the problem (4.2). To obtain these codes, we leverage (i) iterative gradient and extra-
gradient methods, which are classical for solving game problems [150, 151], and
(ii) a smoothing technique for dealing with the regularization functions ψ

j
θ above

when they are non-smooth. Refer to Algorithm 4 for an overview of the training
procedure. We start with the first point when dealing with smooth objectives.

Unrolled optimization for convex games. Consider a set of m objective functions
of the form

min
zj∈Rp

hj(Z) with Z = [z1, . . . , zm], (4.6)

where the functions hj are convex and differentiable and may depend on other
parameters than zj. Our objective is to find a zero of the simultaneous gradient

H(Z) = [∇z1 h1(Z), · · · ,∇zm hm(Z)], (4.7)

which corresponds to a Nash equilibrium of the game (4.6). In the rest of this
presentation, we consider both the general setting and the simpler case of so-called
potential games, for which the equilibrium can be found as the optimum of a single
convex objective. This is the case for several of our regularizers, for example the TV
penalty with symmetric weights. More details are provided in Appendix 4.a.1 on
the nature of the non-cooperative games corresponding to our penalties.
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Table 4.2: Gradient descent (GD) vs. Extra-gradient. Denoising results in avg. PSNR
with σ = 25 on BSD68 [127].

Method GD (24 iters) GD (48 iters) Extra-gradient (24 iters)

Trainable TV symmetric 27.58 27.50 27.82
Trainable TV assymetric 27.99 27.89 28.24

Two standard methods studied in the variational inequality litterature [150, 151,
152, 153] are the gradient and the extra-gradient [154] methods. The iterates of the
basic gradient method are given by

Zt+1 = Zt − ηtH(Zt), (4.8)

where ηt > 0 is a step-size. These iterates are known to converge under a condi-
tion called strong monotonicity of the operator H, which is related to the concept
of strong convexity in optimization, see [150]. Because this condition is relatively
stringent, the extra-gradient method is often prefered [154], as it is known to con-
verge under weaker conditions, see [152, 153]. The intuition of the method is to
compute a look ahead step in order to compute more stable directions of descent:

Extrapolation step Zt+1/2 = Zt − ηt H(Zt)

Update step Zt+1 = Zt − ηtH(Zt+1/2).
(4.9)

In this paper, our strategy is to unroll iterates of one of these two algorithms, and
then to use auto differentiation for learning the model parameters θ. Furthermore,
parameters that control the optimization process (e.g., step size ηt) can also be learnt
with this approach. It should be noted that optimization-driven layers have never
been used before in the context of non-cooperative games, to the best of our knowl-
edge, and therefore an empirical study is needed to choose between the strate-
gies (4.8) or (4.9). In our experiments, extra-gradient descent has always performed
at least as well, and sometimes significantly better, than plain gradient descent for
comparable computational budgets. See for example Table 4.2 for a smoothed vari-
ant of the TV penalty.

Moreau-Yosida smoothing. The non-smooth regularization functions we consider
can be written as a sum of simple terms. Omitting the dependency on θ for sim-
plicity, we may indeed write

ψj(Z) = ∑r
k=1 φk(Lk,j(Z)) for some r ≥ 1,

where Lk,j is a linear mapping and φk is either the `1- or `2-norm. For instance,
φk is the `1-norm with Lk,j(Z) = ak,j(zj − zk) in Rp for the TV penalty, and
Lk,j(Z) = [

√a1,jz1(k), . . . ,√a1,jzq(k)]> in Rq with φk being the `2-norm for the
non-local group regularization. Handling such non-smooth convex terms may be
achieved by leveraging the so-called Moreau-Yosida regularization [155, 156, 157]

Φk(u) = min
v

{
φk(v) +

α

2
‖v− u‖2

}
,

which defines an optimization problem whose solution is called the proximal op-
erator Proxφk/α[u]. As shown in [155], Φk is always differentiable and ∇Φk(u) =
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α(u − Proxφk/α[u]), which can be computed in closed form when φk = `1 or `2.
The positive parameter α controls the trade-off between smoothness (the gradient
of Φk is α-Lipschitz) and the quality of approximation. It is thus natural to define a
smoothed approximation Ψj of ψj as Ψj(Z) = ∑r

k=1 Φk(Lk,j(Z)).
Note that when the proximal operator of ψj can be computed efficiently, as is the
case for the `1-norm, gradient descent algorithms can typically be adapted to handle
the non-smooth penalty without extra computational cost [59], and there is no need
for Moreau-Yosida smoothing. However, the proximal operator of the TV penalty
and the non-local group regularization do not admit fast implementations. For
the first one, computing the proximal operator requires solving a network flow
problem [158], whereas the second one is essentially easy to solve when the weights
aj,k form non-overlapping groups of variables, leading to a penalty called group
Lasso [149].
We are now ready to present our unrolled algorithm as we have previously dis-
cussed gradient-based algorithms for solving convex smooth games and a smooth-
ing technique for handling non-smooth terms. Generally, at iteration t, the gradient
algorithm (4.8) performs the following simultaneous updates for all problems j

u(t)
k,j ← Proxφk/αk,t

[Lk,j(Z
(t))] for k = 1, . . . , r

z(t+1)
j ← z(t)j − ηt

(
∇zj hθ

(
Pjx, z(t)j

)
+

r

∑
k=1

αk,t

[
L∗k,j

(
Lk,j(Z

(t))− u(t)
k,j

)]
j

)
,

where L∗k,j is the adjoint of the linear mapping Lk,j. The computation of the gra-
dients can be implemented with simple operations allowing auto-differentiation in
deep learning frameworks. Interestingly, the smoothing parameter α can be made
iteration-dependent, and learned along with other model parameters such that the
amount of smoothing is chosen automatically.

4.3.4 Tricks of the Trade for Unrolled Optimization

Our strategy is to unroll iterates of our algorithms, and then compute ∇θz?θ by au-
tomatic differentiation. We present here a set of practical rules, some old and some
new, facilitating training when hθ is a patch encoding function on a dictionary D.

Initialization. To help the algorithm converge, we choose an initial stepsize ηt ≤
1
L , where L is the Lipschitz constant of ∇zhθ, which is the classical step-size used
by ISTA [64]. To do so, inspired by [104] we normalize the initial dictionary by its
largest singular value and take η0 = 1. Note that we can go one step further and
normalize the dictionary throughout the training phase. This is in fact equivalent
to the spectral normalization that has received some attention recently, notably for
generative adversarial networks [159].

Untied parameters. In our framework, ∇zj hθ(Pjx, zj) = D>
(
Dzj − Pjx

)
. It has

been suggested in previous work [68, 1, 104] to introduce an additional parameter C
of the same size as D, and consider instead the parametrization C>

(
Dzj − Pjx

)
,

C acting as a learned preconditioner. Even though the theoretical effect of this
modification is not fully understood, it has been observed to accelerate convergence
and boost performance for denoising tasks [1]. In our experiments, we will indicate
in which cases we use this heuristic.
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Backtracking. A simple way for handling the potential instability of the un-
rolled algorithm is to use a backtracking scheme which automatically decreases the
stepsize when the training loss diverges. This heuristic was used for instance in [1].
More details are provided in Appendix 4.a.2.

Barzilai-Borwein method for choosing the stepsize. A different, perhaps
more principled, approach to improved stability consists in adaptively choosing
an adaptive stepsize ηt. The literature on convex optimization proposes a set of
effective rules, known as Barzilai-Borwein (BB) step size rules [160]. Even though
these rules were not designed for convex games, they appear to be very effective in
practice in the context of our optimization-driven layers. Concretely, they lead to
step sizes ηt,j = ‖D>Dsj‖2/‖Dsj‖2 with sj = z(t)j − z(t−1)

j for problem j at itera-
tion t.

Table 4.3: Study of stabilization tech-
niques for learnt sparse coding. Denois-
ing results in average PSNR with σ = 25
on BSD68.

Method Psnr (dB)
D C,D

BM3D [87] 28.57
Sparse Coding (SC) 7 7

SC + Backtracking 28.71 28.83
SC + Spectral norm 28.69 28.82
SC + Barzilai-Borwein 28.82 28.86

In our experiments, we observed that
spectral normalization, backtracking, and
Barzilai-Borwein step size were all effec-
tive to stabilize training. We have noticed
that the spectral normalization impacts
negatively the reconstruction accuracy,
while the BB method tend to improve it
by using larger stepsizes, at the expense
of a larger computational cost. This is il-
lustrated in Table 4.3 for a smoothed vari-
ant of sparse coding (we indicate with a
crossmark when the algorithm diverges).
In addition, we observe that the untied
models brings a small boost in reconstruc-
tion accuracy.

4.4 Experiments

We consider three different tasks, illustrated with various combinations of regular-
ization functions in order to demonstrate the wide applicability of our approach
and its flexibility. A software package and additional details are provided in the
supplementary material for reproducibility purposes.

Image denoising. For image denoising experiments, we use the standard setting
of [94] with BSD400 [127] as a training set and on BSD68 as a test set. We opti-
mize the parameters of our models using Adam [130] and also use the backtracking
strategy described in Section 4.3.4 that automatically decreases the learning rate by
a factor 0.5 when the training loss diverges. For the non-local models, we follow [1]
and update the similarity matrices three times during the inference step. We use the
parametrization with the C matrix for our patch-based experiments. We also com-
bine our variance regularization with [1]. Additional training details and hyperpa-
rameters choices can be found in Appendix 4.a.2. We report performance in terms
of averaged PSNR in Table 4.4, and more detailed tables with additional results are
available in Appendix 4.a.3 for pixel-level models, and for the patch-based models
involving a dictionary D. Our models based on non-local sparse approximations
perform better than the competing deep learning models with the exception of [92]
for σ ≥ 15 with much fewer parameters. In addition, we also observed that our as-
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Table 4.4: Grayscale denoising on BSD68, training on BSD400 for all methods.
Performance in terms of average PSNR. Tiny CNN is a CNN baseline with few
parameters. See Appendix 4.a.3 for qualitative results.

Method Params Noise Level (σ)
5 15 25 50

Tiny CNN (ours) 326 35.17 29.42 26.90 24.06
Tiny CNN (ours) 1200 36.47 30.36 27.70 24.60
BM3D [87] - 37.57 31.07 28.57 25.62
LSCC [90] - 37.70 31.28 28.71 25.72
CSCnet [104] 62k 37.69 31.40 28.93 26.04
GroupSC [1] 68k 37.95 31.71 29.20 26.17
FFDNet [113] 486k N/A 31.63 29.19 26.29
DnCNN [94] 556k 37.68 31.73 29.22 26.23
NLRN [92] 330k 37.92 31.88 29.41 26.47

Pixel-reconstruction
TV symmetric 288 36.91 30.27 27.66 24.51
TV assymetric - extra-grad 480 37.30 30.76 28.24 25.32
Laplacian symmetric 288 35.17 28.42 26.14 23.70
Laplacian assymetric - extra-grad 480 35.20 28.46 26.39 23.77
Bilateral - extra-grad 146 36.75 29.89 27.20 23.72
Bilateral TV - extra-grad 146 36.94 30.46 27.78 24.52
Non-local TV - extra-grad 307 37.53 31.03 28.50 25.26
Non-local Laplacian - extra-grad 307 37.54 31.00 28.47 25.46

Patch-reconstruction
Sparse Coding (SC) 68k 37.84 31.46 28.90 25.84
Sparse Coding + Variance 68k 37.83 31.49 29.00 26.08
Sparse Coding + TV 68k 37.84 31.50 29.02 26.10
Sparse Coding + TV + Variance 68k 37.84 31.51 29.03 26.09
Non-local group 68k 37.95 31.69 29.19 26.19
Non-local group + Variance 68k 37.96 31.70 29.22 26.28
GroupSC + Variance 68k 37.96 31.75 29.24 26.34

symetric TV models are almost on par with BM3D while being significantly faster
(see Appendix 4.a.3 for more details) with only a very small amount of parameters.

Compressed Sensing for fMRI. Compressed Sensing for functional magnetic res-
onance imaging (fMRI) aims at reconstructing functional MR images from a small
number of samples in the Fourier space. The corresponding inverse problem is

min
y∈Rn

‖Ay− x‖2
2 + λΨ(y), (4.10)

where the degradation matrix is A = PF , P is a diagonal binary sampling matrix
for a given sub-sampling pattern, F is the discrete Fourier transform such that the
observed corrupted signal x is in the Fourier domain, and Ψ is a regularization func-
tion. This problem highlights the ability of our framework to handle both localized
and non localized constraints. In our paper, we implemented two models revisiting
some well studied priors for compressed sensing in an end-to-end fashion:

• Pixel reconstruction with total variation: we aim at solving the optimization for
each node minyi∈R ‖Ay− x‖2

2 + TVi(y). In the past, total variation has been
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widely used for MRI [161], often in combination with sparse regularization in
the wavelet domain.

• Patch encoding on a dictionary with sparse coding: we solve a collection of
optimization problems of the form minzi∈Rn ‖Aŷ(z)− x ‖2

2 + λ‖zi‖1, with
y = 1

n ∑j R>j Dzj the average of the overlapping patches. Some previous meth-
ods have explored dictionary-based reconstruction [162], but they were not
investigated from a task-driven manner with end-to-end training.

In our experiments, we use the same setting as [107] for fair comparison: we train
and test our models on the brain MRI dataset studied in that paper. Our models
are trained separately for each sampling rate. We used the pseudo radial sampling
for the matrix P similarly to the other methods. The reconstruction accuracy are
reported in term of PSNR over the test set in Table 4.5. Our trainable model relying
on a trainable TV prior performs surprisingly well given the conceptual simplicity
of the prior. Also importantly, it runs significantly faster than all competing meth-
ods with a very small number of parameters. Furthermore, our trainable sparse
coding method for fMRI gives strong performance and exceeds the state of the art
for sampling rates larger than 30%. Note that architecture choices (patch and dic-
tionary size) of our models are the same as for the denoising task, and we did not
try to optimize them for the considered task, thus demonstrating the robustness of
our approach.

Table 4.5: Compressed sensing for fMRI on the MR brain dataset using a pseudo
radial sampling pattern. Performance comparisons in terms of PSNR (dB).

Method Params 20 % 30 % 40% 50% Test time

TV [161] - 35.20 37.99 40.00 41.69 0.731s (cpu)
RecPF [163] - 35.32 38.06 40.03 41.71 0.315s (cpu)
SIDWT - 35.66 38.72 40.88 42.67 7.867s (cpu)
PANO [164] - 36.52 39.13 40.31 41.81 35.33s (cpu)
BM3D-MRI [165] - 37.98 40.33 41.99 43.47 40.91s (cpu)
ADMM-net [107] - 37.17 39.84 41.56 43.00 0.791s (cpu)
ISTA-net [114] 337k 38.73 40.89 42.52 44.09 0.143s (gpu)

CS-TV (ours) 140 36.80 39.63 41.58 43.46 0.015s (gpu)
CS-Sp. cd. (ours) 68k 37.80 40.50 42.46 44.16 0.213s (gpu)
CS-Sp. cd. + Var (ours) 68k 37.79 40.67 42.54 44.17 0.213s (gpu)

Table 4.6: Denoising with less data. Results in terms of average PSNR(dB) on
BSD68 with σ = 15. All the models are trained on a similar subset of BSD400 for
fair comparaison.

Method Params
Training images

400 200 100 50

DnCNN [94] 556k 31.73 31.65 31.47 31.23

TV extra-grad 480 30.75 30.72 30.67 30.66
SC+Var 68k 31.49 31.49 31.47 31.40
GroupSC+Var 68k 31.75 31.66 31.62 31.54
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Table 4.7: Dense stereo matching fine-tuning on kitti2015 train set, performance reported on
the kitti2015 validation set.

Model 3-px error (%)

PSMNet [166] 2.14 ± 0.04

PSMNet+TV 12 2.11 ± 0.03
PSMNet+TV 24 2.11 ± 0.04
PSMNet+TV extra 2.10 ± 0.03

Dense Stereo Matching. Our approach can be used to provide a generic regu-
larization module that can easily be integrated into various neural architectures.
We showcase its versatility by using it for deep stereo matching [167]. Given
aligned image pairs, the goal is to compute disparity d for each pixel. Tra-
ditionally stereo matching is formulated as minimization of an energy function
Edata(d) + λEsmooth(d) where the data term, Edata measures how well d agrees
with the input image pairs, Esmooth enforces consistency among neighboring pixels’
disparities: TV is a commonly chosen regularizer. Recent deep learning methods
tackle the problem as a supervised regression to estimate continuous disparity map
given pairs of stereo views and ground truth disparity maps [166]. We propose to
combine our smoothing TV block with a state-of-the-art deep learning model [166].
In practice, we combine our block with a pretrained model on the SceneFlow [168]
dataset, and fine-tune the pretrained model on the kitti2015 [169] train set, follow-
ing the training procedure described in [166]. We used the original implementation
of [166] available online and did not change any hyperparameters. We report in Ta-
ble 4.7 the performance on the validation set in term of 3 pixels error which counts
predicted pixel as correct if the disparity deviates from the ground truth from 3 pix-
els or less. We ran the experiment 10 times for each model (with and without the
TV regularization). We observed that our TV block introduces very few additional
parameters and consistently boosts performances.

Training with few examples. We conducted denoising experiments with less
training data and report corresponding results in Table 4.6. We use the code re-
leased by the authors for training DnCNN with less data. Very interestingly the
gap between our best model and CNN-based models increases when decreasing
the size of the training set. We believe that this is an appealing feature, particularly
relevant for applications in medical imaging or microscopy where the amount of
training data can be very limited.

4.5 Discussion

We have presented a general framework based on non-cooperative games to train
end-to-end imaging priors. Our experiments demonstrate the flexibility and the
effectiveness of our approach on diverse tasks ranging from image denoising to
fMRI reconstruction and dense stereo matching. Beyond image processing, we be-
lieve that the issue of interpretability is important. We consider models with a clear
mathematical description of the decision function they produce. As a by-product,
our models are also more parameter efficient than classical deep learning models.
We believe that these are important steps to build systems that should not be seen
as black boxes anymore, that produce explanable decisions, and that do not require
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training a system for days on a huge corpus of annotated data. These are important
questions, which we are planning to address explicitly in the future.

4.a Appendix

This supplementary material is organized as follows: In Section 4.a.1, we discuss
additional priors that were not presented in the main paper, but which are in prin-
ciple compatible with our framework, and we provide more details about potential
games. In Section 4.a.2, we provide implementation details that are useful to repro-
duce the results of our paper (note that the code is also provided). In Section 4.a.3,
we present additional quantitative results and additional results regarding inference
speed of our models that were not included in the main paper for space limitation
reasons. Finally, in Section 4.a.4, we present additional qualitative results (which
require zooming on a computer screen).

4.a.1 Discussion on Models and Priors

4.a.1.1 Additional Priors

Our framework makes it possible to handle models of the form:

hj(Z) = hθ(Pjxj, zj) + λ
r

∑
k=1

φk(Lk,j(Z)), (4.11)

where φk is a simple convex function that admits a proximal operator in closed
form, and Lk,j is a linear operator. In the main paper, several regularization func-
tions have been considered, including the total variation, variance reduction, or
non-local group regularization penalties. Here, we would like to mention a few ad-
ditional ones, which are in principle compatible with our framework, but which we
did not investigate experimentally. In particular, two of them may be of particular
interest, and may be the topic of future work:

• the regularization λ‖H>zj‖1, where H is a matrix, may correspond to several
settings. The matrix H may be for instance a wavelet basis, or may by learned,
corresponding then to the penalty used in the analysis dictionary learning
model from the paper “The cosparse analysis model and algorithms” of Nam
et al., 2013.

• the regularization λφ(H>zj) where φ is a smooth function is closely related
to the model introduced in [112], and to the Field of experts model of Roth
and Black from the 2005 paper “Fields of Experts: A Framework for Learning
Image Priors”, even though the functions used in these other works are not
convex.

4.a.1.2 Potential Games

A potential game is a non-cooperative convex game whose Nash equilibria corre-
spond to the solutions of a convex optimization problem. We will now consider
problems of the form (4.11), and show that all penalties that admit some symmetry
are in fact potential games. Assuming the functions φk to be smooth for simplicity,
optimality conditions for the convex problems (4.11) are, for all j = 1, . . . , m:

∇zj hθ(Pjxj, zj) + λ
r

∑
k=1
∇zj φ̃k,j(Z) = 0, with φ̃k,j(Z) = φk(Lk,j(Z)). (4.12)
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Let us now assume the following symmetry condition such that if problem l in-
volves a variable zj through a function φ̃k,l(Z), then problem j also involves the
same term. Based on this assumption, we may define the potential function

V(Z) :=
m

∑
j=1

(
hθ(Pjxj, zj) +

λ

2

r

∑
k=1

φ̃k,j(Z)

)
.

The partial derivative of this potential function with respect to zj is then

∇zj hθ(Pjxj, zj) +
λ

2

m

∑
l=1

r

∑
k=1
∇zj φ̃k,l(Z) = ∇zj hθ(Pjxj, zj) +

λ

2

m

∑
l=1

∑
k∈Nj,l

∇zj φ̃k,l(Z),

where Nj,l is the set of functions φ̃k,l involving variable zj. The previous gradient
can then be simplified into

∇zj hθ(Pjxj, zj) +
λ

2

r

∑
j=1
∇zj φ̃k,l(Z) +

λ

2 ∑
l 6=j

∑
k∈Nj,l

∇zj φ̃k,l(Z).

Since the symmetry condition can be expressed as ∑r
j=1 φ̃k,l(Z) =

∑l 6=j ∑k∈Nj,l
φ̃k,l(Z), the condition ∇V(Z) = 0 is then equivalent to (4.12).

Note that we have assumed the functions φk to be smooth for simplicity, but a
similar reasoning can be conducted for non-smooth functions, by using the concept
of subgradients.

Examples of potential games.

• the `1-norm: with r = 1 and φ̃1,j = ‖zj‖1, since problem j does not involve
any variable zl for l 6= j;

• Symmetric TV / Laplacian: problem j may involve a variable zl through a
term aj,l‖zj − zl‖1. Then, problem l involves the same term al,j‖zj − zl‖1
under the condition aj,l = al,j.

• Symmetric non local group with r = p and φ̃k,j =

λk‖[√aj,1z1(k), . . . ,√aj,mzm(k)]>‖2. Under the condition of symmetric
weights aj,l = al,j, we obtain again a potential game.

Potential games are appealing as they provide guarantees about the existence of
Nash equilibria without requiring optimizing over a compact set. Yet, we have
found that allowing non-symmetric weights often performs better. This is illus-
trated in Table 4.8 for a simple denoising experiment.

4.a.2 Implementation Details and Reproducibility

4.a.2.1 Training Details

For the training of patch-based models for denoising, we randomly extract patches
of size 56× 56 whose size equals the window size used for computing non-local
self-similarities; whereas we train pixel level models on the full size images. For
fMRI experiments we also trained the models on the full sized images. We apply a
mild data augmentation (random rotation by 90◦ and horizontal flips). We optimize
the parameters of our models using ADAM [130].
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Table 4.8: Symmetric vs assymmetric grayscale denoising on BSD68, training on
BSD400 for all methods. Performance is measured in terms of average PSNR.

Method Params Noise Level (σ)
5 15 25 50

TV symmetric 72 36.08 30.21 27.58 24.74
TV assymetric - extra-grad 480 37.30 30.76 28.24 25.32
Laplacian symmetric 72 34.88 28.14 25.90 23.45
Laplacian assymetric - extra-grad 480 35.20 28.46 26.39 23.77
Non-local group - symmetric 68k 37.94 31.67 29.17 26.16
Non-local group - assymetric 68k 37.95 31.69 29.20 26.19

The learning rate is set to 6 × 10−4 at initialization and is sequentially lowered
during training by a factor of 0.35 every 80 training steps, in the same way for all
experiments. Similar to [104], we normalize the initial dictionary D0 by its largest
singular value as explained in the main paper in Section 4.3.4. We initialize the
dictionary C,D and W with the same dictionary obtained with an unsupervised
dictionary learning algorithm (using SPAMS library).
We have implemented the backtracking strategy described in Section 4.3.4 of the
main paper for all our algorithms, which automatically decreases the learning rate
by a factor 0.8 when the loss function increases too much on the training set, and
restore a previous snapshot of the model. Divergence is monitored by computing
the loss on the training set every 10 epochs. Training the non-local models for
denoising are the longer models to train and takes about 2 days on a Titan RTX
GPU. We summarize the chosen hyperparameters for the experiments in Table 4.9.

Table 4.9: Hyper-parameters chosen for every task.

Experiment Gray denoising (patch) Gray denoising (pixel) fMRI

Patch size 9 - 9
Dictionary size 256 - 256
Nr epochs 300 300 150
Batch size 32 32 1
K iterations 24 24 24
Middle averaging 3 3 -
Correlation update
frequency f 1/6 1/12 -

4.a.3 Additional Quantitative Results

4.a.3.1 Inference Speed

In Table 4.10 we provide a comparison of our TV models in terms of speed with
BM3D for grayscale denoising on the BSD68 dataset. For fair comparison, we re-
ported computation time both on gpu and cpu.

4.a.3.2 Image Denoising

We provide additional results for grayscale denoising with different variations of
the prior introduced in the main paper, as well as combination of different pri-
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Table 4.10: Inference speed for image denoising.

Params Psnr Speed

BM3D [87] - 25.62 7.28s (cpu)
TV assymetric 240 24.93 0.014s (gpu) / 0.18s (cpu)
TV assymetric (extra) 480 25.32 0.021s (gpu) / 0.28s (cpu)

ors. We reported performances for gray denoising in Table 4.11 for the pixel based
models, and in Table 4.12 for the patch based models. In Table 4.11 untied κ denotes
when we used a different set of learned parameters κ at each stage of the refinement
step of the similarity matrix for the non-local models.

Table 4.11: Pixel level grayscale denoising on BSD68, training on BSD400 for all
models. Performance is measured in terms of average PSNR.

Method Params Noise Level (σ)
5 15 25 50

BM3D [87] - 37.57 31.07 28.57 25.62
Tiny CNN 326 35.17 29.42 26.90 24.06
Tiny CNN 1200 36.47 30.36 27.70 24.60

TV symmetric 288 36.08 30.21 27.58 24.74
TV symmetric - extra-grad 144 37.02 30.33 27.82 24.81
TV assymetric- 240 36.83 30.49 27.99 24.93
TV assymetric - extra-grad 480 37.30 30.76 28.24 25.32

Laplacian symmetric 288 34.88 28.14 25.90 23.45
Laplacian symmetric - extra-grad 144 33.87 28.14 25.91 23.45
Laplacian assymetric 240 35.20 28.48 26.17 23.78
Laplacian assymetric - extra-grad 480 35.20 28.46 26.39 23.77

Non-local TV assymmetric 154 37.25 30.86 28.28 25.42
Non-local TV assymmetric (untied κ) 235 37.12 31.01 28.37 25.24
Non-local TV assymmetric - extra-grad 226 37.83 30.98 28.34 25.31

Non-local TV assymmetric -
extra-grad (untied κ) 307 37.53 31.03 28.50 25.26

Non-local Laplacian assymmetric 154 37.31 30.75 28.33 25.15
Non-local Laplacian assymmetric -

(untied κ) 235 37.53 31.01 28.37 25.47

Non-local Laplacian assymmetric -
extra-grad 226 37.51 30.99 28.34 25.13

Non-local Laplacian assymmetric -
extra-grad (untied κ) 307 37.54 31.00 28.47 25.46

Bilateral 74 36.76 29.89 27.16 23.97
Bilateral TV 74 36.60 29.82 27.23 24.00
Bilateral - extra-grad 146 36.75 29.89 27.20 23.72
Bilateral TV - extra-grad 146 36.94 30.46 27.78 24.52

4.a.4 Additional Qualitative Results

Finaly, we show qualitative results for grayscale denoising in Figures 4.3, 4.4.
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Table 4.12: Patch level grayscale denoising on BSD68, training on BSD400 for all
methods. Performance is measured in terms of average PSNR.

Method Params Noise Level (σ)
5 15 25 50

BM3D [87] - 37.57 31.07 28.57 25.62
LSCC [90] - 37.70 31.28 28.71 25.72
CSCnet [104] 62k 37.69 31.40 28.93 26.04
FFDNet [113] 486k N/A 31.63 29.19 26.29
DnCNN [94] 556k 37.68 31.73 29.22 26.23
NLRN [92] 330k 37.92 31.88 29.41 26.47
GroupSC [1] 68k 37.95 31.71 29.20 26.17

Sparse Coding + Barzilai-Borwein 68k 37.85 31.46 28.91 25.84
Sparse Coding + Variance 68k 37.83 31.49 29.00 26.08
Sparse Coding + TV 68k 37.84 31.50 29.02 26.10
Sparse Coding + TV + Var 68k 37.84 31.51 29.03 26.09
Sparse Coding + TV + Var + BB 68k 37.86 31.52 29.04 26.04

Non-local group - symmetric 68k 37.94 31.67 29.17 26.16
Non-local group - assymetric 68k 37.95 31.69 29.20 26.19
Non-local group - assymetric + TV 68k 37.96 31.71 29.22 26.26
Non-local group - assymetric + Var 68k 37.96 31.70 29.23 26.28
Non-local group - assymetric + Var + TV 68k 37.95 31.71 29.24 26.30
GroupSC + Variance 68k 37.96 31.75 29.24 26.34
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Figure 4.3: Grayscale denoising for 4 images from the BSD68 dataset. Best seen by zooming
on a computer screen.
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Figure 4.4: Results of our patch level models for grayscale denoising for 4 images from the
BSD68 dataset. Best seen by zooming on a computer screen.



Chapter 5

Super-Resolution from Raw Image
Bursts

Chapter abstract:
This presentation addresses the problem of reconstructing a high-resolution im-
age from multiple lower-resolution snapshots captured from slightly different
viewpoints in space and time. Key challenges for solving this super-resolution
problem include (i) aligning the input pictures with sub-pixel accuracy, (ii) han-
dling raw (noisy) images for maximal faithfulness to native camera data, and
(iii) designing/learning an image prior (regularizer) well suited to the task. We
address these three challenges with a hybrid algorithm building on the insight
from [79] that aliasing is an ally in this setting, with parameters that can be
learned end to end, while retaining the interpretability of classical approaches
to inverse problems. The effectiveness of our approach is demonstrated on
synthetic and real image bursts, setting a new state of the art on several bench-
marks and delivering excellent qualitative results on real raw bursts captured
by smartphones and prosumer cameras.

B. Lecouat, J. Ponce, J. Mairal. Lucas Kanade Reloaded : End-to-End Super-
Resolution from Raw Image Bursts. International Conference on Computer Vision
(ICCV), 2021.
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5.1 Introduction

The problem of reconstructing high-resolution (HR) images from lower resolution
(LR) ones comes in multiple flavors, that may significantly differ from each other in
both technical detail and overall objectives. When a single LR image is available, the
corresponding inverse problem is severely ill-posed, requiring very strong priors
about the type of picture under consideration [170, 171]. For natural images, data-
driven methods based on convolutional neural networks (CNNs) have proven to be
very effective [172, 173]. Generative adversarial networks (GANs) have also been
used to synthesize impressive HR images that may, however, contain “hallucinated”
high-frequency details [98, 174].
In the true super-resolution setting [175, 176, 171],1 where multiple LR frames are
available, HR details are present in the data, but they are spread among multiple
misaligned images, with technical challenges such as recovering sub-pixel regis-
tration, but also the promise of recovering veridical information in applications
ranging from amateur photography to astronomy, biological and medical imaging,
microscopy imaging, and remote sensing.
Videos are of course a rich source of multiple, closely-related pictures of the same
scene, with several recent approaches to super-resolution in this domain, often com-
bining data-driven priors from CNNs with self-similarities between frames [177,
178, 179]. However, most digital videos are produced by a complex pipeline map-
ping raw sensor data to possibly compressed, lower-resolution frames, resulting
in a loss of high-frequency details and spatially-correlated noise that may be very
difficult to invert [148]. With the ability of modern smartphone and prosumer cam-
eras to record raw image bursts, on the other hand, there is a new opportunity to
restore the corresponding frames before the image signal processor (ISP) of the cam-
era produces irremediable damage [180, 79]. This is the problem addressed in this
presentation, and it is challenging for several reasons: (i) images typically contain
unknown motions due to hand tremor,2 making subpixel alignment difficult; (ii)
converting noisy raw sensor data to full-color images is in itself a difficult problem
known as demosaicking [181, 1]; and (iii) effective image priors are often data driven,
thus requiring a differentiable estimation procedure for end-to-end learning.
In this paper, we jointly address these issues and propose a new approach that
retains the interpretability of classical inverse problem formulations while allowing
end-to-end learning of models parameters. This may be seen as a bridge between
the “old world” of signal processing and the “brave new one” of data-driven black
boxes, without sacrificing interpretability: On the one hand, we address an inverse
problem with a model-based optimization procedure alternating motion and HR
image estimation steps, directly building on classical work from the 1980s [72, 182]
and 1990s [183]. On the other hand, we also fully exploit modern technology in the
form of a plug-and-play prior [184, 108] that gracefully mixes deep neural networks
with variational approaches. In turn, unrolling the optimization procedure [102, 1,

1“Single-image super-resolution” has become a popular nickname for single-image upsampling
under strong priors; here, we use the classical definition of super-resolution from multiple LR snap-
shots [176, 171].

2Image bursts acquired on a tripod may also present subpixel misalignments in practice due to floor
vibrations, as observed in our experiments.
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185] allows us to learn the model parameters end to end by using training data with
synthetic motions [180].
Since aliasing produces low-frequency artefacts associated with undersampled
high-frequency components of the original signal, it is typically considered a nui-
sance, motivating camera manufacturers to add anti-aliasing (optical) filters in front
of the sensor.3 Yet, aliased images carry high-frequency information, which may be
recovered from multiple shifted measurements. Perhaps surprisingly, aliasing is
thus an ally in the context of super-resolution, a fact already noted in earlier ref-
erences, see [186]. As shown in the rest of this presentation, our approach to raw
burst super-resolution also exploits this insight, and it achieves a new state of the
art on several standard benchmarks that use synthetic motion for ground truth.
It also gives excellent qualitative results on real data obtained with smartphone
and prosumer cameras. Interestingly, as illustrated by Figure 6.1, our method has
turned out to be surprisingly robust to noise given the particularly challenging set-
ting of raw image super-resolution, which involves simultaneous blind denoising,
demosaicking, registration, and upsampling.

Summary of contributions.

• To the best of our knowledge, we propose the first model-based architecture
learnable end to end for joint image alignment and super-resolution from raw
image bursts.

• We introduce a new differentiable image registration module that can be ap-
plied to images of different resolutions, is readily integrable in neural archi-
tectures, and may find other uses beyond super-resolution.

• We show that our approach gives excellent results on both real image bursts
(with up to ×4 upsampling for raw images) and synthetic ones (up to ×16 for
RGB images).

5.2 Related Work

Classical multiframe super-resolution. Tsai and Huang wrote the seminal pa-
per in this setting [176], with a restoration model in the frequency domain as-
suming known translations between frames. Most latter approaches have focused
on the spatial domain, and they generally fall into two main categories [29]: In
interpolation-based methods, LR snapshots aligned with sub-pixel precision are
jointly interpolated into an HR image [187, 188]. Impressive results have recently
been obtained for hand-held cameras using the variant of this method proposed
by Wronski et al. [79], whose insight of exploiting aliasing effects has been one of
the inspirations of our work. However, due to the sequential nature of their al-
gorithm, errors may propagate from one stage to the next, leading to sub-optimal
reconstructions [189]. In contrast, iterative spatial domain techniques iteratively
refine an estimate for the super-resolved image so as to best explain the observed
LR frames under some image formation model. Variants of this approach include
the early iterated backprojection algorithm of Irani et al. [190], the maximum like-
lihood technique of Elad and Feuer [55], and the model regularized by bilateral
total variation of Farsiu et al. [78]. The image formation parameters are either be

3There is, however, a trend today toward removing these filters, as in the prosumer camera used in
some of our experiments with real images.
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Figure 5.1: Proof of concept for extreme ×16 upsampling. The right image is obtained by
processing a burst of 20 LR images presented on the left obtained with synthetic random
affine movements and bilinear downsampling.

assumed to be known a priori through calibration, or estimated jointly with the
HR image. In general, inter-frame motion can either be estimated separately, or be
treated as an integral part of the super-resolution problem [191, 183], thus avoiding
motion estimation between LR frames, whose accuracy may be affected by under-
sampling [192]. The method proposed in the rest of this paper combines the best
of both worlds since it performs joint estimation while aligning the LR frames with
the reconstructed HR image.

Learning-based approaches. In this context, the multiframe case has received less
attention than its single-image counterpart, for which several loss functions and
architectures have been proposed [98, 174, 185]. Most multi-frame algorithms fo-
cus on video super-resolution. Model-based techniques learn non-uniform inter-
polation or motion compensation using convolutional neural networks [193] but
the most successful approaches so far are model free, leveraging instead diversity
with 3D convolutions or attention mechanisms [177, 179]. Learning-based methods
have also been used in remote sensing applications, using 3D convolutions [194] or
joint registration/fusion architectures [195] for example. Finally, and closer to our
work, Bhat et al. [180] have recently proposed a network architecture for raw burst
super-resolution, together with a very interesting dataset featuring both synthetic
and real images for training and testing. It is important to note that learning-
based approaches to super-resolution are typically trained on synthetically gener-
ated LR images [196], a strategy that may not generalize well to real photographs
unless great care is taken in modeling the image corruption process [197]. Learning
super-resolution models from real LR/HR image pairs is quite challenging since
it requires in general using separate cameras with different lenses and spatial res-
olution, with inevitable spatial and spectral misalignments. As shown by our ex-
periments, our method, although trained from synthetic LR images, gives excellent
results with real bursts taken from different smartphones and cameras. Leveraging
real images at training time is, for now, left for future work.

5.3 Proposed Approach

This section presents the three main components of our approach: its image for-
mation model, an optimization procedure for solving the corresponding inverse
problem, and its unrolled implementation in a feedforward architecture whose pa-
rameters can be learned end to end.
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5.3.1 Image Formation Model

Image acquisition in a digital camera starts from an instantaneous irradiance func-
tion fγ,t : [0, 1]2 → R+ defined on a continuous retinal domain with nonnegative
values, such that fγ,t(u) is the spectral irradiance value at point u, time t, and
wavelength γ, accounting for blur due to optics, atmospheric effects, etc. The cam-
era sensor integrates fγ,t in the spatial, time, and spectral domains to construct a
raw digital image y : [1, . . . , n]2 → R+, where each pixel’s spectral response is typi-
cally dictated by the 2× 2 RGGB Bayer pattern, with twice as many measurements
for the green channel than for the red and blue ones [181]. Modern cameras turn
the raw image y into a full blown, three-channel RGB image x with the same spatial
resolution through an interpolation process called demosaicking.
In practice, we do not have access to fγ,t to use as ground truth for learning an
image restoration process, even when an accurate model of the fγ,t 7→ x map is
available. Thus, we model instead the process x 7→ yk, where x is a latent high-
resolution (HR) image we wish to recover, and the low-resolution (LR) images yk
(k = 1, . . . , K) have been observed in a burst of length K. We assume that x is
sharp, without any blur, and noiseless. The burst images are obtained through the
following forward model (Figure 5.2):

yk = DBWpk x + εk for k = 1, . . . , K, (5.1)

where εk is some additive noise. Here, both the HR image x and the frames yk of the
burst are flattened into vector form. The operator Wpk parameterized by pk warps
x to compensate for misalignments between x and yk caused by camera or scene
motion between frames, assumed here to be a 6-parameter affine transformation of
the image plane, then resamples the warped image to align its pixel grid with that of
yk. Finally, the corresponding HR image is blurred to account for integration over
both space (the LR pixel area, using either simple averaging or, as in the figure,
a Gaussian filter) and time (accounting for camera and/or scene motion during
exposure), and it is finally downsampled in both the spatial and spectral domains
by the operator D, with an (a priori) arbitrary choice of where to pick the sample
from (pixel corner or center for example), the spectral part correponding to selecting
one of the three RGB values to assemble the raw image. It will prove convenient in
the sequel to rewrite (5.1) as y = Upx + ε, where

Up =

DBWp1
...

DBWpK

, y=

y1
...

yK

, p =

 p1
...

pK

, ε=

ε1
...

εK

. (5.2)

Before closing this section, let us note that simpler motion models with two (trans-
lation) or three (rigid motion) parameters, or (much) more complex piecewise-affine
or elastic models could be considered depending on the application. We focus here
on the scenario where a user wishes to zoom in on a relatively small crop (say,
between 100× 100 to 800× 800 pixels) of a multi-megapixel image, and the affine
model has proven effective with real handheld cameras in this setting. This implic-
itly corresponds to a globally piecewise-affine motion model.

5.3.2 Inverse Problem and Optimization

Given the image formation model of Eqs. (5.1)–(8.2), recovering the HR image x
from the K LR frames yk in the burst can be formulated as finding the values of x



CHAPTER 5. SUPER-RESOLUTION FROM RAW IMAGE BURSTS 114

Latent HR image 𝑥

LR input image 𝑦!

Warped HR image Blurred HR image Decimated HR imageResampled HR image

𝑊"! 	

𝐵 𝐷

Figure 5.2: Image formation: The HR image x is warped then resampled to align it with
the LR image y using the operateur Wpk . It is then blurred by the operator B to account for
integration over LR pixels and finally downsampled in the spatial and spectral domains by
the operator D (the spectral downsampling from RGB to R, G or B is not illustrated here for
simplicity).

and p that minimize
1
2
‖y−Up x‖2 + λφθ(x), (5.3)

where φθ is a parameterized regularizer, to be detailed later, and λ is a parameter
balancing the data-fidelity and regularization terms. Many methods are of course
available for minimizing this function. Like others (e.g., [198]), and mainly for
simplicity, we choose here a quadratic penalty method [199, Sec. 17.1] often called
half-quadratic splitting (or HQS) [200]: the original objective is replaced by

Eµ(x, z, p) =
1
2
‖y−Up z‖2 +

µ

2
‖z− x‖2 + λφθ(x), (5.4)

where z is an auxiliary variable, and µ is a parameter increasing at each iteration,
such that, as µ → +∞, the minimization of (5.4) with respect to x, z and p be-
comes equivalent to that of (5.3) with respect to x and p alone. Each iteration of
HQS can be viewed as one step of a block-coordinate descent procedure for mini-
mizing E, changing one of variables z, x and p at a time while keeping the others
fixed, with the value of µ increasing after each iteration. Convergence guarantees
for quadratic penalty methods require an approximate minimization of Eq. (5.4)
with increasing precision over time [199]. Following common practice in computer
vision (e.g. [198]), we use HQS without formally checking that its precision indeed
increases with iterations. This very simple procedure turns out to work well in
practice. Its steps are detailed in the next three paragraphs, the exponent t being
used to designate the value of the variables at iteration t. The sequence of weights
(µt)t≥0 is learned end-to-end as explained in Section 5.3.3.

Updating z. Several strategies are possible for minimizing Eq. (5.4) with respect to
z. Given the dimension of the problem, one may choose for instance a fast iterative
minimization procedure such as conjugate gradient descent. Since an approximate
minimization is sufficient for our needs, we have chosen to use instead a single
step of plain gradient descent, which converges more slowly in theory, but is also
simpler and more easily amenable to the unrolled optimization strategy for end-to-
end learning that will be presented next. The update at iteration t is given by

zt ← zt–1 − ηt
[
U>pt–1(Upt–1 zt–1 − y) + µ(zt–1 − xt–1)

]
, (5.5)
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where ηt > 0 is some step size, also learned end to end.

Updating the motion parameters p. Let pk denote the part of the parameter vector
p responsible for the alignment of zt and yk in (5.4). The corresponding optimiza-
tion problem can be rewritten as

min
pk

1
2
‖yk − DBWpk zt‖2. (5.6)

This is a non linear least-squares problem, which can once again be solved using
many different techniques. Here, we pick a Gauss-Newton approach, which cor-
responds to a variant of the Lucas-Kanade algorithm [72, 182], showing again that
a 40-year old technique can still be relevant today. Specifically, we perform one
Gauss-Newton step at each iteration t for each pk in parallel:

pt
k ← pt–1

k −
(

Jt>
k Jt

k

)−1
Jt>

k rt
k, (5.7)

where rt
k = Upt–1

k
zt − yk is the residual of the non-linear least-squares problem (5.6),

and Jt
k = (∂Upt–1

k
/∂pk)zt is the Jacobian of the DBWpk operator. The only difference

with a Lucas-Kanade iteration is the presence of a high-resolution frame zt and the
downsampling operator DB. This is similar to [183], or more recently [191, 201],
which align high-resolution images with low-resolution ones.

Estimating the HR image x. The x update is obtained as

xt ← arg min
x

µt–1

2
‖zt − x‖2 + λφθ(x),

which amounts to computing the proximal operator of the prior φθ . In practice,
we follow a “plug-and-play” approach [184, 202, 108], and replace the proximal
operator by a parametric function fθ(zt) (here, a CNN, see implementation details).
Using such an implicit prior has proven very effective in our setting. More tradi-
tional image priors such as total variation could of course have been used as well.

5.3.3 Unrolled Optimization and Backpropagation

The optimization procedure described so far requires choosing hyper-parameters
such as the sequence (µt)t≥0, and its implicit prior also involves model parame-
ters θ. By using a training set of n LR burst/HR image pairs, we propose to learn all
these parameters in a supervised fashion. We denote the training set by (Yi, xi)

n
i=1,

where Yi = {yi
j}K

j=1 is the i-th burst of LR images associated to the HR image xi.
We then unroll the optimization procedure for T steps and, denoting by x̂T(Yi) the
HR image estimated from burst Yi, we consider the objective function

1
n

n

∑
i=1

L(x̂T(Yi), xi), (5.8)

where L is the `2 or `1 loss (in practive we have observed that the `1 loss performs
slightly better). Because every step of our estimation procedure is differentiable, we
minimize (5.8) by stochastic gradient descent.
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Learned data prior. Good image priors are essential for solving ill-posed inverse
problems. As noted earlier, instead of using a classical one, such as total variation
(TV) or bilateral total variation (BTV) [78], we learn an implicit prior parameterized
by a convolutional neural network fθ in a data-driven manner. We use the ResUNet
architecture introduced in [185] in practice. It involves four scales, each of which
has an identity skip connection between downscaling and upscaling operations.

5.3.4 Implementation Details and Variants

Downsampling and blurring operators D, B. We have tried different variants of
downsampling/blurring strategies such as Gaussian smoothing. In practice, we
have observed that simple averaging, which is differentiable and parameter-free,
gives good results in all our experiments. As a consequence, we do not assume any
knowledge about the blur used to generate data, corresponding to an operator B
that only captures blur due to photon integration on the sensor without addressing
optical blur. We argue that this limited model is relevant because modern cam-
eras and smartphone are aliased [79], which may explain the generalization to real
images, as soon as the scene is static.

Initialization by coarse alignement. To initialize the motion parameters p, we
cannot minimize (5.6) as in the previous section, because no good estimate of the
HR image is available. Therefore, we align each LR frame to an arbitrary one from
the burst (e.g., the first one) by using the Lucas-Kanade forward additive algorithm
[72, 73] which is known to be robust to noise. Note that another difficulty lies in the
raw format of images. To overcome this issue, we simply convert raw images into
grayscale images by using bilinear interpolation. This is of course sub-optimal, but
sufficient for obtaining coarse motion parameters.

Initialization via coarse-to-fine strategy. For extreme upsampling factors (×16),
we found a coarse-to-fine initialization strategy to be useful: We initialize the mo-
tion parameters p0

j and high-resolution image z0 by using the output of the algo-
rithm trained at a lower upsampling factor. For instance, ×16 can be obtained by
applying twice a ×4 algorithm, or four times ×2 algorithm.

5.4 Experiments

Experiments were conducted on synthetic and real raw image bursts. We also pro-
vide experiments on RGB bursts in the appendix, allowing easier comparison with
earlier approaches that cannot handle raw data.

Training procedure and data. For synthetizing realistic raw bursts from
groundtruth RGB images, we follow the approach described in [180], using the
author’s publicly available code4 on the training split of the Zurich raw to RGB
dataset [203]. The approach consists of applying the inverse RGB to raw pipeline
introduced in [197]. Displacements are randomly generated with Euclidean mo-
tions and frames are downscaled with bilinear interpolation in order to simulate
LR frames containing aliasing. Synthetic, yet realistic, noise is added to the frames,
and color values are discarded according to the Bayer pattern. Then, we train our
models for minimizing the loss (5.8). We perform 100 000 iterations of the ADAM

4https://github.com/goutamgmb/NTIRE21_BURSTSR.

https://github.com/goutamgmb/NTIRE21_BURSTSR
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optimizer with a batch size of 10, a burst size of 14 and with a learning rate of
3 × 10−5 decaying by a factor 2 after 50 000 iterations. Our approach is imple-
mented in Pytorch and takes approximately 1.5 days to train on an Nvidia Titan
RTX GPU. We evaluate our models in all our experiments with a burst size of 14
unless specified.

Extreme ×16 upsampling on RGB images. As a proof-of-concept, we also per-
form experiments for an unusual ×16 super-resolution task, using the coarse-to-
fine strategy of Sec. 5.3.4. A result is presented in Fig. 5.1, showing impressive
reconstruction and additional ones can be found in the appendix. Even though not
realistic, we believe the experiment to be of interest, as it demonstrates the effec-
tiveness of our approach in an idealistic, yet extreme, setting.

Demosaic+SISR ETH [180] Ours

Figure 5.3: Visual comparison on synthetic raw image bursts used in [180]. Demosaic+SISR
is our single-image baseline based on the ResUNet architecture [185] (see main text). The two
right columns are produced by methods dedicated to raw burst processing, respectively [180]
and ours.

Evaluation on synthetic RAW images. The evaluation protocol of [180] allows us
to perform quantitative comparison with their state-of-the-art method for process-
ing raw image bursts. An additional comparison with [79] would have been inter-
esting but this method is part of a commercial product that could not be shared
with us.
We provide a quantitative comparison in Table 5.1 with the model introduced in
[180], as well as a single-image upsampling baseline based on the ResUNet archi-
tecture [185], which we use as a plug-and-play prior in our model.
To that effect, we first use the validation set of [180] available online (with no over-
lap with the training set), for which motions are unknown, allowing us to compare
with their method, which we outperform by more than 2dBs. In order to perform
further comparison and conduct the ablation study, we also build an additional val-
idation set by randomly extracting 266 images from the Zurich raw to RGB dataset,
allowing us to generate validation data with known motion. We evaluate varia-
tions of our model in the same table, notably comparing the registration accuracy
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Method PSNR (db) Geom (pix) SSIM

Scores on public validation set
ETH [180] 39.09 - -
Ours (refine) 41.45 - 0.95

Scores on our own validation set to conduct the ablation study
Bicubic Single Image 33.45 - -
Multiframe L2 only 34.21 - -
Multiframe L2 + TV prior 34.48 - -
Single Image 36.80 - -
Ours (no refinements) 40.38 0.55 0.958
Ours (refinements) 41.30 0.32 0.963

Ours (known motion) 42.41 0.00 0.971

Table 5.1: Results with synthetic raw image bursts of 14 images generated from
the Zurich raw to RGB dataset [203] with synthetic affine motions. Reconstruction
error in average PSNR and geometrical registration error in pixels for our models.
“known p” is the oracle performance our model could achieve, if motion estimation
was perfect.

achieved by these variants by using the geometrical error presented in [73]. More
precisely, we perform a small ablation study by introducing a simpler baseline that
does not perform joint alignement and only exploits the coarse registration module
(no refine baseline). Performing motion refinement significantly improves the reg-
istration accuracy and subsequently the image reconstruction quality. Last, we also
report the oracle performance of our model with known motions.
We provide a visual comparison in Figure 5.3 with single-image SR baselines and
the state-of-the-art method [180] for processing raw image bursts. Only the two ap-
proaches processing bursts are able to recover high-frequency details, demonstrat-
ing their ability to leverage and remove aliasing artefacts, which are very present in
the top image. Significantly better quality results are obtained with our approach.

Impact of burst length and cropping size. The dataset Zurich rgb-to-raw [203]
was very useful for training our models, but it unfortunately features relatively
small image crops of size 96× 96 without giving access to the original megapixel
images. By experimenting with real raw data, it became apparent to us to our
method was performing better with larger crops (e.g., more than 200× 200 pixels),
achieving better registration and visually better results. To study the impact of the
crop size and burst length, we have thus synthesized additional raw bursts from the
DIV2K dataset, and report our experimental results in Figure 5.4, confirming our
findings. Note that this does not appear to be a strong limitation of our approach,
since in real-life scenarios, we can always assume that the original megapixel image
is available. As expected, the performance of our approach is also increasing with
the burst size, even though our models were trained with bursts of size 14.

Results on real raw image bursts, dataset of [180]. In Figure 5.5, we show a
comparison with [180] using their dataset featuring small crops of size 96× 96. As
discussed previously, this setup is suboptimal for our approach, but still produces
visually pleasant results. Choosing which method performs best here is however
very subjective and we found conclusions hard to draw on this dataset. Whereas
the images produced by [180] may sometimes look slightly sharper, one may argue
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Figure 5.4: Left: Impact of the crop size on the registration and reconstruction performance.
Right: Impact of the burst length, see main text for details.

that our approach seems to recover more reliable details, e.g., the text is perhaps
easier to read. Note that our models were trained on synthetic data only and we
leave fine-tuning with real data on this dataset for future work. There is an attempt
in [180] to address the open problem of quantitative evaluation with real data using
a custom metric, but, like any other attempt so far, it is flawed since (i) it is based on
the alignment method of [180], with an unavoidable slight bias in its favor, and (ii)
it assumes ground truth from a particular Canon camera. Interestingly, this score
improvement does not always correlate with visual quality, as shown by Figure 6.
This is by no means a criticism of [3]: we believe instead that quantitative evaluation
on real images is an extremely challenging problem, far from being solved. Since
the submission of our paper, the results of the NTIRE 2021 burst super-resolution
challenge have been published [204]. Our method ranked third quantitatively in the
”synthetic data” part of the challenge that we entered.

47.49db 51.04db 49.51db

45.13db 49.66db 48.29db

Single-image SR ETH[180] Ours

Figure 5.5: Results from real raw bursts from dataset of [180] including Aligned PSNR score
(see main text).

Results on real raw image bursts from various devices. Finally, we demonstrate
the effectiveness of our approach on real raw bursts acquired by different devices.
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We consider a Panasonic Lumix GX9 camera, which is interesting for SR as it does
not feature an optical anti-aliasing filter, a Canon Powershot G7X camera, a Sam-
sung S7 and a Pixel 4a smartphones. Results obtained in high noise regimes have
already been presented in Figure 6.1, showing that our approach is surprisingly
robust to noise. We believe that the result is of interest since it may allow photog-
raphers to use high ISO settings in low-light conditions, without sacrificing image
quality. Other results are presented in Figure 5.5 on low-noise outdoor conditions
with bursts of 20 to 30 raw images. In all cases, the method succeeds at recov-
ering high-frequency details. Many more examples and comparisons with other
multiframe methods are provided in the supplementary material. We also present
failure cases, corresponding in large parts to scene motion. Last, we remark that our
method is relatively fast at inference time. Processing a burst of 20 raw 300× 300
images takes for instance about 1s on an Nvidia Titan RTX GPU, producing an
upsampled image of size 1200× 1200.

5.5 Conclusion

We have presented a simple but effective method for superresolution that combines
the interpretability of model-based approaches to inverse problems with the flex-
ibility of data-driven architectures and can be learned from pairs of synthetic LR
and real HR images. We plan several extensions, including using multiple cam-
eras to add real LR-burst/HR-image pairs to the training mix, and at test time to
take advantage of the multiplicity of imaging devices now available on high-end
smartphones. This will open the door to wide-baseline super-resolution applica-
tions, such as the construction of high quality panoramas and finely detailed tex-
ture maps in multi-view stereo reconstructions. Finally, we plan to explore several
other extensions of our approach, including tackling blurry bursts, extending super-
resolution to reconstruct HDR images, and pursuing applications in the astronomy
and microscopy domains

5.a Appendix
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Figure 5.6: Results from real raw image bursts obtained with various cameras. We provide
comparisons with single image and multiframe baselines. Finest restored details can be seen
by zooming on a computer screen. The last three digits of the phone number, only legible in
our reconstruction, are masked in the figure for privacy concerns.
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This supplementary material presents additional qualitative and quantiative results.
In Figure 5.7 we present additional visual comparison with two burst denoising
methods on real images. In Table 5.2 we present additional experiments on RGB
images. Figures 5.8 and 5.9 are devoted to super-resolution experiments from real
raw data from different smartphones (Google Pixel 3a and 4a, Samsung S7 and S10)
and cameras (Panasonic Lumix GX9 and Canon Powershot G7X) and comparison
with additional baselines. In Figures 5.10, we present extreme upsampling results
by using synthetic RGB image bursts. In Figure 5.11, we present restoration results
obtained from real images with very low SNR to illustrate the efficiency of our
method to perform blind denoising. In Figures 5.12 and 5.13, we study the effect
of the number of frames in the burst on the reconstruction, both in the low SNR
and high SNR settings. Finally, we present failure cases in Figure 5.14, where fast
moving objects are present in the scene.

5.a.1 Comparison with burst denoising methods

We perform additional qualitative comparison on a real image with two burst de-
noising methods. We compare our method with [205] which performs joint denois-
ing and demosaicking on a burst of raw images. We use the code and the pretrained
model made available online. We also use the code and pretrained model of [206].
However the model is only designed to perform grayscale burst denoising, so we
perform denoising independently on each RGB channel and then perform demo-
saicking to get an RGB image. Despite our best efforts for tuning the parameters of
these methods to maximize visual quality, the results obtained are not as good as
our method (see Figure 5.7 below). We believe this is not surprising since each one
of these methods only addresses a subset of our problem. Adapting them success-
fully to our general setting is not trivial.

BKPN [206]+demosaic Mosa2mosa [205]

ISP Mosa2mosa [205] + EDSR Ours

Figure 5.7: Comparison with joint denoising and demosaicking methods.

5.a.2 Evaluation on RGB Images

We compare our approach on the BSD68 dataset against state-of-the-art single-
image and video super-resolution algorithms (considering a burst as a video se-
quence) and report the HR image reconstruction accuracy in terms of average PSNR
in Table 5.2. For the training with RGB data, we perform 80 000 iterations of the
ADAM optimizer with a batch size of 10, a burst size of 14 and with a learning
rate of 3× 10−5 decaying by a factor 2 after 40 000 iterations. For evaluating the
model VSR-DUF [177], we use the code and the pretrained models made available
online by the authors. Other single-image reconstruction results are from [185].
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In the present setting, we consistently outperform other baselines, notably demon-
strating that burst SR cannot simply be addressed effectively by current video SR
approaches. We also note that our models perfom better with less blurring (and
more aliasing). Finally, we evaluate variations of our model in the same table, no-
tably comparing the registration accuracy achieved by these variants by using the
geometrical error presented in [73]. More precisely, we perform a small ablation
study by introducing a simpler baseline that does not perform joint alignement and
only exploits the coarse registration module (no refine baseline). Performing joint
alignment and image estimation systematically improves motion estimation. Last,
we also report the oracle performance of our model with known motions.

Method Scaling factor / blurring kernel std
×2/σ=0.7 ×3/σ=1.2 ×4/σ=1.6

Single Image SR
RCAN [207] 29.48 27.30 25.59
IRCNN [96] 29.60 26.89 25.32
USRNet [185] 30.55 27.76 26.18

Video SR
VSR-DUF[177] - 31.03 29.24

Ours (no refine) 42.36/0.10 32.63/0.14 30.00/0.19
Ours 43.73/0.07 33.10/0.10 29.87/0.14

Ours (known p) 45.72/0.00 34.47/0.00 31.32/0.00

Table 5.2: Results for RGB with synthetic affine motions, of different methods for
different combinations of scale factors and blur kernels. Results are given in term
of average PSNR in dBs and geometrical registration error in pixels for our models.
“known p” is the oracle performance our model could achieve, if motion estimation
was perfect.
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Figure 5.8: Results from real raw image bursts obtained with various cameras. We provide
comparisons with single image and multiframe baselines. Finest restored details can be seen
by zooming on computer screen.
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Figure 5.9: Results from real raw image bursts obtained with various cameras. We provide
comparisons with single image and multiframe baselines. Finest restored details can be seen
by zooming on computer screen.
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Figure 5.10: Extreme ×16 upsampling experiment. The right image is obtained by process-
ing a burst of 20 LR images presented on the left obtained with synthetic random affine
movements and average pooling downsampling
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Figure 5.11: Image restoration of images taken at night with very low signal to noise ratio by
using a Panasonic GX9 camera.

Pa
na

so
ni

c
Pa

na
so

ni
c

Pa
na

so
ni

c

2 4 8 14 20 30

Figure 5.12: Visual differences caused by merging a different number of frames in the case
of low SNR scenes. With a larger number of frames we can observe a quality increase and
better denoising.



CHAPTER 5. SUPER-RESOLUTION FROM RAW IMAGE BURSTS 128

Pa
na

so
ni

c
Pa

na
so

ni
c

2 4 8 12 14 20

Figure 5.13: Visual differences caused by merging a different number of frames in the case
of high SNR scenes. With a larger number of frames we can observe a quality increase.

full frame ISP camera Ours full frame ISP camera Ours

Figure 5.14: Misalignements artefacts due to moving objects in the scene. Our current imple-
mentation does not handle fast moving objects and then generates visual artefacts. Dealing
with fast dynamic scenes will be the focus of future work.



Chapter 6

Joint HDR and Super-Resolution from
Bracketed Raw Bursts

Chapter abstract: Photographs captured by smartphones and mid-range cam-
eras have limited spatial resolution and dynamic range, with noisy response in
underexposed regions and color artefacts in saturated areas. This paper intro-
duces the first approach (to the best of our knowledge) to the reconstruction
of high-resolution, high-dynamic range color images from raw photographic
bursts captured by a handheld camera with exposure bracketing. This method
uses a physically-accurate model of image formation to combine an iterative
optimization algorithm for solving the corresponding inverse problem with a
learned image representation for robust alignment and a learned natural image
prior. The proposed algorithm is fast, with low memory requirements com-
pared to state-of-the-art learning-based approaches to image restoration, and
features that are learned end to end from synthetic yet realistic data. Extensive
experiments demonstrate its excellent performance with super-resolution fac-
tors of up to ×4 on real photographs taken in the wild with hand-held cameras,
and high robustness to low-light conditions, noise, camera shake, and moderate
object motion.

B. Lecouat, T. Eboli, J. Ponce, J. Mairal. High Dynamic Range and Super-
Resolution From Raw Image Bursts. ACM Transactions on Graphics (SIGGRAPH),
2022.
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Figure 6.1: An example of joint super-resolution (SR) and high-dynamic range (HDR) imag-
ing. Left: An 18-photo burst was shot at night from a hand-held Pixel 4a smartphone at
12MP resolution with an exposure time varying from 1/340s to 1/4s. The left half of the
central image from the burst is shown along with the right half of the 192MP HDR image
reconstructed by our algorithm with a super-resolution factor of ×4 (after tone mapping).
Right: Three small crops of the two images corresponding to the colored square regions on
the left. Crops from the central image of the burst are rendered using Adobe Camera Raw
to convert raw files into jpg with highest quality setting. The HDR/SR results are rendered
using the PhotoMatix tone mapperhttps://www.hdrsoft.com/. Note that the 192MP HDR
image on the left is not reproduced at full resolution because of the corresponding file’s size.

6.1 Introduction

Key factors limiting the level of detail of photographs captured by digital cameras
are their spatial resolution and dynamic range: High resolution is necessary to
zoom on small image regions, and high dynamic range is needed to reveal details
hidden in dark areas (e.g.shadows) and avoid color artefacts due to saturation in
bright ones (e.g.highlights). For a given sensor size, higher resolution also means
smaller pixel size, with less light reaching each photoreceptor, resulting in lower

https://www.hdrsoft.com/
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dynamic range and increased noise in dark regions, an effect exacerbated in smart-
phones by their small sensor size. It is natural, and by now rather common, to
use multiple photographs to reconstruct an image with higher spatial resolution,
a process known as super-resolution (or SR for short in this presentation, see, for
example [52]), or dynamic range, a process known as high dynamic range (or HDR)
imaging (see, for example [208]).
We propose in this paper a novel method for joint SR and HDR imaging from the raw
image bursts featuring a range of different exposures that can now be captured by
most smartphones and mid-range cameras (Figure 6.1). A major challenge tackled
by our algorithm is the automated alignment with sub-pixel accuracy of the burst
elements required to compensate for camera shake and possibly (moderate) object
motion, despite the variations in saturation and signal-to-noise ratio due to the
different exposures used across the burst. Other notable difficulties include the
high contrasts and noise levels encountered in night scenes for example, where a
photo might feature both very dark and noisy regions and saturated ones near light
sources, as well as the fact that a digital camera only captures one color channel
at each pixel according to the corresponding color filter array (or CFA, often a Bayer
pattern). Despite the latter challenge, it now seems clear that it is better to work
directly with the raw image data than with the sRGB pictures produced by the image
signal processor (or ISP) of the camera since their construction involves several steps,
including white balance, denoising, demosaicking, gamma correction, compression
of each color channel content to 8 bits, etc., that result in an unavoidable loss of
information in high spatial frequencies and dynamic range.
The approach proposed in the rest of this presentation extends the algorithm for
multi-frame super-resolution of [51] to jointly perform blind denoising, demosaick-
ing, super-resolution and HDR image reconstruction from raw bursts. Its key fea-
tures can be summarized as follows:

• Our method uses a physically-accurate model of image formation that
accounts for the successive transformations applied to the original analog
irradiance image, including quantization of the signal, noise, exposure and
spatial quantization.

• We combine an iterative optimization algorithm for solving the corresponding
inverse problem with a learned image representation for robust alignment
and a learned natural image prior. This is the first main technical novelty of
our paper, enabling us to address the joint reconstruction of high-resolution,
high-dynamic range color images from raw photographics bursts captured
by a handheld camera with exposure bracketing.

• The proposed algorithm is fast, with low memory requirements compared to
state-of-the-art learning-based approaches to image restoration, and features
that are learned end to end from synthetic yet realistic data, generated using
again our image formation model.

• We introduce an image alignment method to compensate for camera shake
which is robust to (moderate) object motions and an image fusion technique
which is itself tolerant to alignment errors. Together, these form the second
main technical novelty of our paper, and they are key factors in the robust-
ness of our algorithm in both the SR and HDR imaging tasks with, notably,
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significant improvement over [51] in super-resolution.

• Extensive experiments demonstrate the excellent performance of the proposed
approach with super-resolution factors of up to ×4 on real photographs taken
in the wild with hand-held cameras, and high robustness to low-light con-
ditions, noise, camera shake, and moderate object motion. These results are
confirmed by quantitative and qualitative comparisons with the state of the
art in super-resolution and HDR imaging tasks on synthetic and real image
bursts.

6.2 Background

6.2.1 High Dynamic Range Imaging

Bracketing techniques. [209, 208, 210, 211] construct an HDR image by combin-
ing multiple photographs of the same scene with different exposures. The darkest
pictures are used to reconstruct areas prone to saturation and the brightest ones are
needed for restoring dark regions that are likely to be noisy (we will come back
to that point later). They typically work on linRGB images, that is, demosaicked
images before they are transformed by the camera’s ISP into sRGB images ready for
display. A sequence of sRGB input photographs must therefore in general be “lin-
earized” by inverting this mapping, also known as the camera response function
(or CRF). The HDR image is then reconstructed as a weighted sum of the linearized
bracket images, normalized by the corresponding shutter speed. Its pixel values
are typically represent as single-precision floating-point numbers, with min and
max those of the image bracket. Bracketing-based approaches to HDR imaging
face a number of classical issues, including choosing the optimal fusion weights,
estimating the CRF [208], leveraging accurate raw image noise models [210, 212,
42], selecting the best exposure parameters for a fixed number of frames in the
bracket [213, 211], registering images with different exposures [214, 215], which
is significantly more challenging than aligning same-exposure images [216], and
removing ghosting artefacts [217, 218] due to misalignment.

Using raw bursts with constant shutter speed. Unlike classical exposure brack-
eting techniques, HDR+ [219] takes as input a burst of raw underexposed images
captured with the same exposure time. These are mostly free of saturation but
noisy in dark regions. A 12-bit, denoised raw image is obtained by aggregating the
10-bit photos of the burst. It is then demosaicked and tone mapped. Recent up-
dates of HDR+ use a couple of well-exposed frames to achieve better denoising and
deghosting [220], or leverage the metering technique of [211] to adapt the original
algorithm to low-light situations [221].

Using pixelwise ISO sensitivities. Instead of relying on classical imaging devices,
[222] reconstruct a single HDR image from a sensor with spatially-varying pixel
exposures. This approach can be further combined with learning-based methods
[223, 224]. Even though our work focuses on standard sensors, we believe it to
be flexible enough to be adapted to pixelwise ISO sensitive sensors under simple
modification of the image formation model. This is an interesting research direction
for future work, but beyond the scope of our paper.
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LR frame 1 LR frame 6 LR frame 12 LR frame 18 Ours (HDR+SR ×4)

Figure 6.2: Exposure bracketing: Left: Three high dynamic range, high-resolution images
obtained by our method from 18-image bursts taken by a handheld Pixel 4a smartphone
with a ×4 super-resolution factor. We show post-processed sRGB pictures for the sake of
presentation. Right: Small crops from sample photos in the burst and our reconstruction.
Note the high level of noise in the short-exposure images, in particular in the second row, and
the saturated regions in the long-exposure ones. As shown by the last column of the figure,
our algorithm recovers details in saturated areas and remove noise in the darkest regions.
The reader is invited to zoom in on a computer screen.

Learning-based methods for HDR imaging have also been proposed. [225] intro-
duce a convolutional neural network (CNN) to predict the irradiance from three
low-dynamic range (LDR) images, with different exposures, camera poses and pos-
sibly moving subjects, pre-aligned with an optical flow algorithm. Most recent
CNN-based multi-image methods [226, 227, 228, 229, 230] learn to align and fuse
demosaicked images in an end-to-end manner, and they typically operate on image
triplets such as those in the dataset of [225]. CNN-based approaches to single-image
HDR include [231, 232, 233, 234]. They rely on machine learning to recover missing
details in the darkest and saturated areas of tone-mapped images.

6.2.2 Super-Resolution

We limit here our discussion to multi-frame super-resolution algorithms. Although
single-image learning-based techniques have been used to generate very impressive
and highly-detailed images [235, 236], their objective is not the same as ours: they
aim at generating a high-resolution picture compatible with one input photograph,
whereas we want to reconstruct the details that are actually available in the input
burst.

Energy-based methods. High-frequency information present in low resolution
(LR) photos with aliasing artefacts is useful for reconstructing a high-resolution
(HR) image from multiple LR frames [237]. Unfortunately, this information is typ-
ically lost during the denoising and demosaicking steps performed by the camera
ISP pipeline to produce sRGB images. [237] estimate an HR demosaicked image
from a sequence of raw photographs by minimizing a penalized energy—that is,
they solve an inverse problem via optimization. [52] adapt the kernel method of
[238] and exploit natural hand tremor to jointly demosaick and super-resolve a raw
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image burst with magnification factors up to ×3 in a fraction of a second on a
handheld smartphone.

Learning-based techniques. [53] learn a CNN with attention module to align, de-
mosaick and super-resolve a burst of raw images. In a follow-up work, [239] mini-
mize a penalized energy including a data term comparing the sum of parameterized
features residuals. [51], learn instead a hybrid neural network alternating between
aligning the images with the Lucas-Kanade algorithm [240], predicting an HR im-
age by solving a model-based least-squares problem and evaluating a learned prior
function. [241] propose a neural network architecture that aligns an input burst of
images while performing super-resolution with a non-local fusion module.

6.2.3 Joint HDR Imaging and Super-Resolution

The algorithms proposed by [242, 243] address joint SR and HDR imaging with
an existing SR energy-based solver. To tackle the multi-exposure setting, they in-
troduce weights inspired by bracketing techniques in the least-squares term. More
generally, this joint image restoration problem has been addressed in a two-stage
fashion: (i) image registration with an algorithm robust to varying exposures and
(ii) solving a least-squares problem including operators modelling both SR and
HDR. For instance, [244] propose an exposure-invariant transform before apply-
ing the FFT-based registration technique of [245]. The image is then obtained by
solving a penalized least-squares problem. [214] use an optical flow approach with
normalized gradients for robustness to changes of exposure, and the HR/HDR
image is found by solving again a penalized least-squares problem. [246] adapt a
backprojection algorithm to the multi-exposure setting and simply solve a weighted
least-squares problem without prior, with comparable performance but lower com-
putational cost. [247] explore the case where the LDR SR images are also blurred
with camera shake or motion blur. Similar to the HDR case, CNNs have also been
proposed for single-image joint SR and HDR, e.g.[248], while [249] address instead
joint SR, HDR and tone mapping by merging a pair of previously aligned over- and
under-exposed images with a two-stream CNN. In contrast with these techniques,
we use trainable image features to adapt the raw image registration module of [51]
to the varying-exposure setting in a robust manner, and jointly learn these features
and a parametric image prior in an end-to-end manner.
Figure 6.2 shows examples of the input data these methods use and samples of the
the predicted high-resolution HDR images we predict with the proposed approach.

6.3 Image formation model

We now describe the process generating a burst of low-dynamic low-resolution raw
images from a high-resolution HDR image. This process yields a natural inverse
problem formulation, which we will leverage later to build a trainable architecture.

6.3.1 Dynamic Range

After analog-to-digital conversion, a camera sensor outputs a black-and-white mo-
saicked image whose pixel values are integers obtained by quantizing the number
of photons collected by each photosite on a linear q-bit scale [250], where q is called
the bit depth of the sensor. We denote by Pq the set of the discrete values a pixel may
take, as measured in data numbers (or DNs [43, 250]), from 0 to 2q − 1.
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Figure 6.3: Empirical measurements of the shot and read noise levels α and β from the
metadata of raw images taken with the Google Pixel3a smartphone. The numbers next to
the markers are the corresponding empirical ISO levels. As observed by [254], there exists a
linear relationship between log10(α) and log10(β) that we leverage to train our models.

The dynamic range R(u) for a pixel u is defined as the ratio of the largest to the
smallest values this pixel may take: the larger the bit depth of the sensor, the greater
is its maximal value in Pq. The ratio is usually given in photographic stops, where
each stop corresponds to a multiple of 2. In practice, the largest value u can take is
limited either by the bit depth q or the white level c set by the camera, to prevent
color artefacts in highlights [251], whereas the lowest value is actually limited by
the noise ε(u) and by the camera black level b [252]. Note that even in the absence
of light, ε(u) is never 0 since any digital camera suffers from various sources of
electronic noise [211]. This also shows that increasing dynamic range is strongly
related to denoising, as discussed later in this section.

6.3.2 Exposure

As mentioned above, raw pixel values depend linearly on the number of photons
captured by each photosite (ignoring quantization effects) and thus on exposure
time. In photography, this effect is quantified by the exposure value (or EV): Increas-
ing it by +1EV (resp. decreasing by -1EV) corresponds to doubling (resp. halving)
the raw pixel values. The EV depends on the ISO gain, aperture size and exposure
time. In this work, we will only control the exposure time ∆t, keeping it small
enough to (mostly) avoid motion blur, and keep the other two quantities constant
since modifying the ISO gain may change the noise distribution [211] and adjusting
the aperture size changes the blur of out-of-focus regions [253].
The raw value y(u) in Pq recorded at some pixel u is thus related to the irradiance
x(u) in R+ at the same location by

y(u) = S(∆tx(u)), (6.1)

where S is the function mapping pixel values from R+ to Pq. This equation is only
valid when S(∆tx(u)) < 2q − 1, with saturation occurring for higher values. Using
short exposure times limits saturation, but, as shown in the next section, leads to a
poor signal-to-noise ratio (or SNR).

6.3.3 Noise and SNR

The raw image noise ε(u) at each pixel comes from the physics of light and the elec-
tronics of the camera. The former is called shot noise, and it can be modelled with
a Poisson distribution [252]. The latter is often referred to as read noise and cor-
responds to random signal fluctuations caused by the electronics and quantization
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effects. It is usually modelled with a zero-mean Gaussian distribution [252]. The
combination of shot and read noise can be modelled by a single random variable
ε(u) following a zero-mean Gaussian distribution with pixel-dependent standard
deviation, defined for any pixel value y(u) as [252, 254, 255]:

s(u) =
√

αy(u) + β, (6.2)

where α and β are respectively the variances of the shot and read noise. Fig-
ure 6.3 shows the distribution of α (shot noise level) and β (read noise level) for
the Google Pixel3a camera. We have obtained theses values from the EXIF meta-
data of raw images taken with the smartphone. Each marker corresponds to a
couple (log10(α), log10(β)) for an ISO level. In dark regions, read noise dominates
shot noise, and limits the total dynamic range.
For the Poissonian-Gaussian noise model of Eq. (6.2), the SNR is:

SNR(u) =
m(u)y(u)

s(u)
=

m(u)y(u)√
αy(u) + β

, (6.3)

where m is a binary mask excluding the saturated pixels. It is a monotoni-
cally increasing function of the pixel value y(u), essentially linear in dark regions
(e.g.shadows) where read noise dominates shot noise, and essentially proportional
to
√

y(u) in bright regions (e.g.highlights) where the opposite occurs [210]. As al-
ready discussed in the previous section, noise removal is essential for generating
images with high dynamic range, and Equation (6.3) shows that high raw pixel
values lead to better SNR and thus better dynamic range in both dark and bright
image regions. But high pixels values everywhere in an image can typically only be
achieved at the cost of saturating the brightest areas. Exposure bracketing avoids
this problem by using the longest exposures to eliminate read noise from dark re-
gions and the shortest ones to avoid saturation in bright spots.

6.3.4 Overall Image Formation Model

The original analog image cannot be recovered on a computer and we instead focus
on estimating a discrete HR/HDR sh× sw× 3 photograph x with pixel values in R+

from a burst of K raw LR and LDR images yk (k = 1, . . . , K) of size h×w with entries
in Pq. The integer s is the super-resolution factor. Following [51], let us introduce
the warp operator Wk associated with the kth photo in the burst and accounting
for camera shake, the blur operator B taking into account the integration of the
signal over the pixel area is modeled by a convolution, the decimation operator
Ds associated with the super-resolution factor s, and the C operator is a binary
mask modeling the sensor CFA. Putting them together and taking into account the
exposure time ∆tk, the analog low-resolution image associated with the irradiance
image x is ak = CDsBWk(∆tkx), which can be rewritten as ak = Akx, where Ak =
∆tkCDsBWk (the factor ∆tk commutes with the operators since it only scales the
image values).
Combining this model with Eq. (6.2) and (6.1) yields, for all k = 1, . . . , K:

yk = S (Akx + εk) , (6.4)

where we abuse the notation so S operates on a whole image instead of a scalar, and
εk is a zero-mean Gaussian noise with pixel-dependent variance αAkx+ β according
to Eq. (6.2). The operator CDsB impacts the spatial resolution, while S and the noise
variance limit the dynamic range of each image yk.



CHAPTER 6. JOINT HDR AND SUPER-RESOLUTION FROM BRACKETED RAW
BURSTS 137

Figure 6.4: Joint HDR imaging and super-resolution ×4 with a burst taken with a hand-held
Pixel4a at night, facing a spotlight. Top: The original burst. Middle: The central image
in the burst (left) and the reconstructed HDR/SR image after tone mapping (right). Bottom:
Six crops showing details of the original and HDR/SR images, presented respectively in the
first and second rows.

Note that our model assumes that the scene is static during burst acquisition, which
may result in ghosting artefacts in the presence of scene motion, when using this
model within an inverse problem formulation. We will, however, introduce in the
next section simple weighting strategies to make our approach robust to moderate
scene motion.

6.4 Proposed Approach

The goal of this work is to design a function Fθ with learnable parameter θ
which, given K raw images Y = {y1, . . . , yK} and corresponding exposure times
∆ = {∆t1, . . . , ∆tK}, predicts a single-precision floating-point estimate x̂ of the the
HR sh× sw× 3 irradiance map:

x̂ = Fθ(Y, ∆). (6.5)

As explained later in this section, all images of the burst are automatically aligned
on a reference frame yk0 (typically the central one that has in general a reasonable
exposure).
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6.4.1 Formulation of the Problem

Inverse problem. Our image formation model (6.4) suggests using an inverse
problem formulation to the design of Fθ and the recovery of x̂. We first con-
vert the discrete raw pixel values from yk in Pq into 32-bits real values in [0, 1],
and construct the binary mask m(yk) representing saturated pixels containing non-
informative values. With an abuse of notation, we keep the notation yk for the
floating-point burst images in the rest of this presentation, and formulate the solu-
tion of our inverse problem as the joint recovery of the warp operators W1, . . . , WK
(parameterized with a piecewise-affine model, as detailed later), and the irradiance
image x:

min
x,W1,...,WK

1
2

K

∑
k=1
‖wk � (yk − Akx)‖2

F + λΩ(x), (6.6)

where Ak is the image formation operator defined in the previous section, � de-
notes pointwise multiplication, and the function Ω is a regularizer, and it will be
discussed in details later. The h× w maps wk store pixel-wise weights used to con-
trol the relative contribution of each frame to the reconstruction of each pixel, a key
factor for robustness in bracketing methods [210, 212].

A robust weighting strategy. We write

wk =
∆tkm(yk)

∑K
j=1 ∆tjm(yj)

� g (yk, Wky1) , (6.7)

where m(yk) is the binary with zero values at saturated pixels (this formulation as-
sumes the existence of non-saturated pixels at corresponding locations in the burst;
when all pixels are saturated, we use uniform weights instead). Here, the function
g is a confidence factor, often used in HDR imaging to weight down images incor-
rectly aligned [218] and avoid ghosting effects. It can be handcrafted from classical
image features and/or priors, but we will instead follow a plug-and-play strategy
(detailed in the next section) to directly learn a parametric function g from supervi-
sory data. Our overall weighting strategy is useful for HDR since it provides larger
weights to frames obtained with longer exposure time that are less noisy, but it also
accounts for registration errors through the learned function g, which turns out to
be critical for robustness to moderate scene motion.

Warp parameterization. We align images with piecewise-affine warps Wk = Wpk ,
where Wk0 is the identity and p = {p1, . . . , pK} is the set of warp parameters. This
is implemented by tiling the images into small (e.g.200× 200) crops, that are aligned
independently with affine transformations with 6 parameters.

Regularizer. Many classical regularizers can be used in the formulation of inverse
problems in image processing applications, for example sparse total-variation pri-
ors [242] or combinations of penalty functions computed from pixel or histogram
values [256, 244, 208]. We instead follow the same plug-and-play strategy as for the
confidence function g, and learn a CNN in place of the proximal operator [63] of
the penalty function Ω. We detail its implementation in Sec. 6.4.3.
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6.4.2 Optimization Strategy

We solve our optimization problem with half-quadratic splitting (or HQS) [257] by
introducing an auxiliary variable z and minimize

min
x,z,p

1
2

K

∑
k=1
‖wk � (yk − Akz) ‖2

F +
η

2
‖x− z‖2

F + λΩ(x). (6.8)

The parameter η is usually increased at each iteration according to some preset
schedule, which guarantees that, as η grows, the solution of this relaxed problem
converges to that of the original one (6.6) [257]. As detailed in Sec. 6.4.3, we choose
instead to learn this parameter from training data, which improves performance in
practice. Note that we now find the warp operators by minimizing the energy with
respect to the warp parameters p, and that all operators involved are implemented
efficiently by exploiting the image structure (e.g.convolutions instead of large sparse
operators, etc.). The optimization is carried out by first initializing z and p, then,
in an alternate fashion, repeating T times (T = 3 in our implementation) an HQS
stage consisting of the three steps detailed below. The motivation for this strategy
is that it allows us to gracefully convert our optimization method into a trainable
architecture, as discussed in Sec. 6.4.3, thanks to automatic differentiation tools [258]
implemented in modern deep learning frameworks.

Updating z. The auxiliary image z is updated by a few steps of a simple gradient
descent (GD) algorithm:

z← z− δ

(
η(z− x) +

K

∑
k=1

A>k
(

w2
k � (Akz− yk)

))
, (6.9)

where δ is a step size (which will be learned automatically by the procedure pre-
sented in the next section), and of course Ak depends on the current warping pa-
rameters p.

Updating x. Minimizing (6.8) with respect to the image x while keeping the other
variables fixed amounts to compute the so-called proximal operator G of Ω [63]:

x = G(z, λ/η) = arg min
x

1
2
‖x− z‖2

F +
λ

η
Ω(x). (6.10)

We will detail in the next section how we implement G.

Updating p. [51] estimate the warp parameters pk (k 6= k0) on 200×200 tiles in a
4-scale Gaussian image pyramid, running three stages of the Lucas-Kanade algo-
rithm [240] at each stage. We will show in Sec. 6.4.3 how to do significantly better,
both quantitatively and qualitatively, by using a similar approach to align learned
features instead.

Initialization of p and z. A fast and coarse initialization of the warp parameters
p is obtained using a sub-pixel variant of the FFT-based algorithm of [259] with
the features of [260]. After having estimated p for the first time with the Lucas-
Kanade algorithm and before the first z-update stage, we initialize z as follows: we
demosaick each frame yk with bilinear interpolation, align them with the warping
operators Wk, average them with the normalized weights ∆k/ ∑K

j=1 ∆j, and finally
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upscale the resulting image by a factor s with bilinear interpolation. This proce-
dure yields a fast and coarse estimate of the HR and HDR image to start the GD
algorithm in Eq. (6.9).

6.4.3 Learnable Architecture

The optimization procedure described in the previous section is implemented as
a function Fθ that produces an estimate x̂ from a burst Y and exposure times ∆,
according to Eq. (6.5). By writing this function as a finite sequence of operations
that are differentiable with respect to the model parameters θ, it is then possible to
leverage training data—that is, pairs of HR/HDR images x associated to LR/LDR
bursts—to learn these parameters for the reconstruction task. This of course raises
questions about data collection and generation, which are discussed later, but it
also opens up many possibilities for further improvements. In particular, as de-
scribed in the rest of this section, this allows us to learn implicitly the regulariza-
tion function Ω by taking advantage of deep learning principles, as well as learning
appropriate weighting strategies, and robust features to improve image alignment.

Learnable proximal operator G. Following the plug-and-play strategy [65] which
has proven powerful in the signal processing literature, we replace the proximal
operator G above by a function Gω represented by a CNN and parameterized by ω,
such that the update (6.10) becomes

x = Gω(z, γ), (6.11)

where γ is also a trainable parameter. The CNN has a residual U-net architecture,
which is a smaller variant of the network of [185] for single-image super resolution.
This network has four scales with respectively 32,64,128,128 channels per scale. We
also run experiments with an even smaller version of the network with 32 features
per channel (dubbed small) and 16 features per channel (dubbed tiny). Note that
for our problem, the first layer has 4 input channels: three for the predicted RGB
auxiliary variable z and one for the scalar γ.

Learnable confidence function g. Similarly, since designing the function g by
hand is difficult, we choose to learn instead a CNN gρ, and the fusion weights
wk become for all k 6= k0:

wk =
∆tkm(yk, c)

∑K
j=1 ∆tjm(yj, c)

� gρ(yk, Wkyk0), (6.12)

The function gρ is implemented with the tiny variant of the U-Net architecture used
above. The network takes as input the concatenation along the channel dimension
of RGB versions of the images yk and Wkyk0 obtained by bilinear interpolation.

Learnable features for alignment. A classical approach to the registration of
frame captured with different exposure times is to use MTB features [260]. Here, we
construct instead a single-channel feature map for each raw image using again the
tiny CNN with U-net architecture, then perform the multi-scale Lucas Kanade algo-
rithm for a fixed number of iterations (3 iteration per scale of the pyramid) directly
on the feature map. Our implementation of the forward additive version of the Lucas
Kanade algorithm is fully differentiable. Therefore we can learn the parameters of
the feature map jointly with all the trainable parameters of our model, following
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Figure 6.5: Day-time comparisons of joint HDR imaging and super-resolution algorithms
with bursts acquired by a Pixel4a. Left: The central image in the burst (top) and our recon-
struction (bottom). Right: Comparison of close-ups of the reconstructions obtained by the
CNN-based Adobe Camera Raw single-image algorithm for ×2 super-resolution and demo-
saicking, the CNN-based ×2 super-resolution method of [248], and our method. (Note: part
of the phone number legible in our case is masked for privacy reasons.)

a strategy similar to [261]. As shown in the experimental section this significantly
improves registration performance.

6.4.4 Learning the Model Parameters θ

We denote here by θ all the learnable parameters of our methods, including those
of the CNNs and the scalar parameters involved in the HQS optimization proce-
dure introduced above (e.g., δ, η, . . . ). We use triplets of the form (x(i), Y(i), ∆(i))
(i = 1, . . . , n) of training data to supervise the learning procedure. In our setting
where ground-truth HDR/HR images are normally not available for real image
bursts, the training data is necessarily semi-synthetic, that is, obtained by apply-
ing various transformations to real images. Obtaining robust inference with real
raw bursts is thus challenging. The hybrid nature of our algorithm, which exploits
both a learning-free inverse problem formulation and data-driven priors, appears
to be a key to achieving good generalization on real raw data acquired in various
conditions that do not necessarily occur in the training dataset.

Dataset generation. Given a collection of sRGB images, we construct bursts of
LDR/LR raw images and HDR/HR RGB targets using the ISP inversion method
of [254] and our image formation pipeline, adjusting the gain to simulate different
exposure times. The noise levels are sampled following the empirical model of
Figure 6.3.
We generate n bursts Y(i) of synthetic raw SR images from both .jpg and .hdr

images with various simulated exposures ∆(i). The latter images are important to
make our network robust to artefacts occurring near saturated areas. We use the
.hdr images from [234].
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Figure 6.6: Night-time comparisons of joint HDR imaging and super-resolution algorithms
with bursts acquired by a Pixel4a. Left: The central image in the burst (top) and our
reconstruction (bottom). Right: Comparison of close-ups of the reconstructions obtained
by the CNN-based Adobe Camera Raw single-image algorithm for ×2 super-resolution and
demosaicking, the CNN-based ×2 super-resolution method of [248], and our method.

Training loss. With this training data in hand, we supervise our model using
the `1 distance between the target irradiance images x(i) and the predicted ones
Fθ(Y(i), ∆(i)), and minimize the cost function:

min
θ

n

∑
i=1

∥∥∥x(i) − Fθ(Y(i), ∆(i))
∥∥∥

1
. (6.13)

By using a normalized scheme, we avoid the sigmoid activation at the top layer of
recent CNNs for HDR imaging [225, 226, 227] forcing the output to be between 0
and 1. We have also tried to use the so-called µ-law [225] to include some kind of
tone mapping in the supervision but it only marginally improved the visual quality
of the images predicted by our model.

Optimizer. We minimize Eq. (6.13) using Adam optimizer with learning rate set to
10−4 for 400k iterations. We decrease the learning rate by 0.5 every 100k iterations.
The weights of the CNNs are randomly initialized with the default setting of the
PyTorch library.

6.5 Results

We first show in Section 6.5.1 several qualitative results illustrating the performance
of our method for joint HDR imaging, super-resolution, demosaicking and denois-
ing from real raw image bursts. Qualitative and quantitative comparisons with ex-
isting methods for super-resolution, HDR imaging, and registrations are presented
in Section 6.5.2, Section 6.5.3 and Section 6.5.4 respectively. The effect of the choice
of prior and the robustness of our method for real images are discussed in Sec-
tion 6.5.5. Additional results, ablations studies, and discussions of its limitations
can be found in the appendix.
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Note that all the HDR images are rendered using Photomatix1 for tone mapping,
which is itself a challenging task [58] beyond the scope of this paper. For baselines
operating on RGB images instead of raw photographs, we first process raw files
with Adobe Camera Raw to generate RGB images with the highest quality possible.

6.5.1 Joint SR and HDR on Raw Image Bursts

To the best of our knowledge, we are the first to address jointly HDR, super reso-
lution, demosaicking, and denoising on bursts of raw images. Therefore, we will
mostly present here qualitative results, and will defer quantitative comparisons to
the following sections that evaluate the performance of our algorithm on separate
HDR or SR tasks.
We consider bursts acquired in different settings by a Pixel 3a or 4a camera, by
using an Android application to shoot bursts of 11 to 18 raw images. We choose
an EV step of 1/3 to 2/3 between each shot. This is particularly important for
night scenes to avoid motion blur in the longest-exposure frames. Our method
successfully restores finer details and extends the dynamic range of the original
shot by denoising dark areas and restoring clipped signals. More precisely:

• Figures 6.4 and 6.6 show night-time photos with large dynamics, similar to
Figure 6.1, with both under- and over-exposed areas in the low-resolution cen-
tral frame. Both the dynamics and the resolution are significantly improved
by our algorithm.

• An outdoor day-time photograph is shown in Figure 6.5, with a particularly
large dynamic range. The scene contains both under-exposed, noisy areas
in the shadows and large bright saturated areas. Note also that the scene
contains patterns which are smaller than the resolution of the native image
which is a particularly hard setting for demosaicking. Our approach handles
such situations well.

• A night scene with both very dark building parts and light bulbs, resulting in
a very large dynamic range (Figure 6). Our approach, unlike our competitors,
can recover details in both the dark and saturated areas.

6.5.2 Pure Super-Resolution

We now move to pure super-resolution from raw image bursts, and compare our
approach with [51], using examples from their paper. The bursts in this section all
have the same exposure, making the alignment simpler compared to the previous
section. We first perform a quantitative evaluation on the semi-synthetic bench-
mark of [53], following their experimental setup and using their dataset. Table 6.1
presents a comparison of our approach for SR, which can be seen as an improved
variant of [51]. All methods in the comparison are designed to process raw im-
age bursts. We first note that our improvements in the image registration module
yields +1dB over [51] for similar network capacities. The geometric error, mea-
suring alignment discrepancies, is also four times smaller than that of [51], which
further suggests the usefulness of our modified Lucas-Kanade module. Since the
other methods of the panel do not explicitly predict any motion vector, we cannot
compute the corresponding geometric errors. We also have a PSNR gain of about

1https://www.hdrsoft.com/
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Figure 6.7: Visual comparison for super-resolution only on real same-exposure raw bursts, of
respectively K = 20 and K = 30 frames, with state-of-the-art competitors. We do not present
HDR results in this figure. Our approach limits Moiré artefacts in the first row and reveals
in general more high frequency image details in both rows. The last row shows an example
requiring deghosting. The ghosted LR image on the left is obtained by averaging the whole
burst to show the pedestrian’s motion. [53] and our method effectively handle small object
motions. The reader is invited to zoom in.

Low resolution [53] [51] [241] Ours

0.5 to 1dB over three of the recent competitors and fall only behind [241] by less
than 1dB but with 13 times fewer learnable parameters. Therefore, the proposed
approach is also a compact and competitive algorithm for SR alone. A speed com-
parison, presented later in Section 6.a.1.4 also shows that our method is faster at
inference time.
The previous comparison is conducted on semi-synthetic data, both for training the
models and for testing, which makes its conclusions difficult to generalize to the
real world of raw bursts from handheld cameras. Nevertheless, it remains the best
existing quantitative experimental setup, to our knowledge, since it is not possible
to acquire reliable HR ground-truth data along with LR raw bursts. Figure 6.7
shows two challenging real-world examples on which we compare qualitatively the
approaches of [53], [51] and [241] to ours, for ×4 super-resolution factor. We display
in the first row the results for a burst of K = 20 raw frames of a textured surface.
Moiré artefacts and aliasing can respectively be noticed in the results from [53]
and [241]. Such artefacts are not visible in our reconstruction and that of of [51].
The second row shows the results for a burst of K = 30 raw images from [51].
Amongst the four methods in the panel, ours returns the sharpest image, with for
instance easier-to-read characters than competitors. We point out that we have not
used any sharpening algorithm on any of these images.
As remarked by [52], there is a physical limit to the maximum frequency one can
reconstruct with aliasing, due to the sensor pitch or the lens point-spread function.
We verify this property in Figure 6.8 where we show two crops from the same
image, with ×2 and ×4 resolution factors. The first row shows details of a balcony
clearly benefiting from a ×4 gain in resolution compared to its ×2 counterpart. The
second row shows however that sometimes, as predicted by [52], ×4 upsampling
factor may not reveal finer details that its ×2 counterpart.
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Table 6.1: Super-resolution (×4) comparison with a selected panel of recent meth-
ods with average PSNR and geometric error when it can be computed. We do not
perform HDR generation in this experiment. Our method falls behind that [241]
within a margin of less than 1dB but with 13 times fewer parameters. We gain 1dB
compared to [51] with a similar number of parameters by upgrading the registration
module.

Model # parameters PSNR Geom (avg)

[53] 13M 40.76 N/A
[51] 3M 41.45 2.56
[239] - 41.56 N/A
[262] 6.6M 41.93 N/A
[241] 26M 43.35 N/A
Ours 3M 42.42 0.80

LR HR (×2) HR (×4)

Figure 6.8: Visualizing super-resolution limit at resolutions increased by ×2 and ×4 with
our model. The first image in the first row benefits from the ×4 improvements whereas the
one in the second row (from the same photograph) is not further enhanced after ×2. See the
discussion in the text.

6.5.3 Pure HDR Imaging

We evaluate the ability of our approach to align and merge raw images into HDR
image at the same resolution as the input.
We compare our approach with a bracketing technique, implemented with the
weights of [211], two state-of-the-art CNNs [226, 227] trained to predict a 32-bit
image from only three LDR images with -2, 0 and +2EV or -3, 0 and +3EV, and
recent single-image HDR CNNs [233, 234]. We generate 266 raw bursts with 32-
bit ground-truth images, each burst containing 11 synthetic raw images with small
random shifts and rotations and Poissonian-Gaussian noise with parameters α and
β selected according the distribution in Figure 6.3. More details about data genera-
tion can be in found in Section 6.a.2 of the appendix. To evaluate the CNNs trained
on RGB images, we first pick the three raw frames corresponding to {-2.4,0,+2.4}
EV in the burst and demosaick them with the approach of [264]. We also demo-
saick the frames before merging the HDR images with the bracketing technique.
If the raw frames are not aligned, after demosaicking, we align the frames either
with the phase correlation algorithm [218] on the MTB features [260] or with our
Lucas-Kanade-based registration technique. For fairness with the CNNs, we com-
pare our approach when there are only three frames in the bracket (the same as for
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Figure 6.9: Comparison between the public-domain implementation [263] dubbed here
HDR+Ipol of Google’s HDR+ [219] (top) with our HDR/SR×4 method. Left: The images
reconstructed by HDR+Ipol (top) and our method (bottom) from a burst of 8 same-exposure
images acquired by a Nexus 5. Note that they are barely distinghuisable at this resolution.
Right: Crops showing that our algorithm reveals finers details while effectively suppressing
noise in dark areas.

the CNNs) and with the whole burst.
We present in Table 6.2 the results of our comparison. We evaluate the PSNR and
the SSIM metrics on both the output of each algorithm and after evaluating the
irradiance maps with µ-law, playing the role of a tone mapping algorithm [225].
However these typical image processing metrics may not be adapted to HDR imag-
ing [265, 266] we thus also report the HDRVDP2 perceptual quality score of [267]
(version 2.2.2). Note that [226] and [227] use RGB images for training, while our
method leverages more information by directly processing raw frames. We also
compare our method to the single-image methods of [233] and [234] running on the
central frame of the burst.
Our algorithm using 11 frames achieves the best results as expected, with
HDRVDP2 margins ranging from +4 to +9 over recent CNN-based methods and
of +4 over the bracketing technique of [211] using 11 frames too. The gap with
CNNs comes from our ability to restore the darker areas in raw photographs con-
taining large read noise whereas these networks are trained on RGB images only.
Figure 6.10 shows qualitative comparisons with the baselines in Table 6.2 for bursts
of 21 images taking during day time and night time. Our method achieves the best
visual results in both dark and saturated areas. Note that the CNN baselines con-
sidered here have been designed to handle 1 or 3 images only, which is not sufficient
to achieve effective denoising through image fusion in challenging settings.
We also compare our approach with a public-domain implementation [263] of
Google’s HDR+ [219] that addresses HDR imaging by fusing images with the same
exposure. In this setting, HDR essentially boils down to burst denoising, which is
effectively handled by our approach. Figure 6.9 shows a qualitative comparison of
HDR+ with our technique. We achieve better denoising, especially in the darkest
areas, while also increasing spatial resolution.

6.5.4 Multi-Exposure Registration

We evaluate the performance of our registration module based on learnable fea-
tures. We measure the geometric alignment error between the ground-truth motion
and predicted one [73] computing the Euclidean distance between the aligned im-
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[227]
(3 frames)

[226]
(3 frames)

[233]
(1 frame)

[234]
(1 frame)

Ours
(3 f,noSR)

[227]
(3 frames)

[226]
(3 frames)

[233]
(1 frame)

[234]
(1 frame)

Ours
(3 f, noSR)

Figure 6.10: Comparison with CNN-based HDR methods processing one to three input
frames. Left: A sequence of three input frames, followed by our result after tone map-
ping, for two scenes. Right: Small crops from the scenes obtained by various methods. To
be fair, we compare them with a version of our model that does not perform super-resolution
(×1 upscaling factor) and only processes a burst of 3 images, in the EV range [-2.4,0,2.4]. We
observe that, in well-exposed regions, the reconstruction performances of the three methods
are similar. Our method appears to be more robust to noise, but more sensitive to non-rigid
motion as shown in the case of the flag.

age corners with that of the ground-truth ones and is counted in number of pixels
in the HR image.
We report the mean and the median over 266 validation bursts (containing 11 im-
ages per burst) synthesized with the same protocol as for generating the training
data. We compare a typical multi-exposure registration scheme consisting in com-
bining MTB features and phase correlation [218] (used for prealigning the images in
our model), with the 3 iterations of the pyramid Lucas-Kanade (PLK) algorithm over
plain pixels and deep features learnt in an end-to-end manner. The three methods
are run on the mosaicked and possibly noisy images, prior to any ISP processing.
We evaluate this panel over three scenarios: (i) HDR generation without SR from
noise-free raw bursts, (ii) HDR generation without SR from raw bursts with noise
and (iii) joint HDR and SR with factor ×4 from raw bursts with noise.
Table 6.3 shows that, in all cases, our approach achieves the best quantitative results,
with a margin ranging from 0.5px for the (unrealistic) noise-free benchmark to more
than 1px for the more challenging ones featuring noise. Interestingly, using more
iterations does not always mean a better alignment. A plausible explanation is that
our model is trained for using three iterations of the LK algorithm, and may be
sub-optimal for more iterations.
We have also empirically observed that the errors in this table are always greater
than that reported by [51] in their work for aligning frames with the same exposure.
This gap is caused in practice by the darkest and brightest frames, much harder to
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Table 6.2: Quantitative comparison of various algorithms for HDR imaging – we
do not perform super-resolution in this experiment – on a synthetic dataset con-
sisting of bracketed raw bursts simulated with our pipeline. Our method directly
takes raw frames as an input. The other methods process RGB frames obtained
here with VNG demosaicking. Our algorithm quantitatively outperforms the other
HDR methods on this dataset, which is not surprising as it is trained leverage the
information lost in the raw to rgb conversion.

Method PSNR (dB) µ-PSNR (dB) SSIM (%) µ-SSIM (%) HDR-VDP2 (Q)

K=1 frames

[234] 20.11 24.42 0.611 0.690 57.32
[233] 22.14 25.85 0.641 0.702 62.94

K=3 frames

[211] + MTB 28.08 29.46 0.819 0.847 61.13
[211] + PLK 27.25 28.69 0.814 0.836 60.82
[226] 26.47 27.61 0.771 0.782 61.80
[227] 26.31 27.11 0.761 0.774 61.14
Ours 33.75 34.39 0.942 0.943 63.24

K=11 frames

[211] + MTB 29.54 30.96 0.862 0.892 62.07
[211] + PLK 28.80 30.21 0.862 0.888 61.95
Ours 37.83 39.22 0.964 0.971 65.44

LK LK, with deep features

Figure 6.11: Qualitative comparison of the reconstructed image with a pyramid of Lucas-
Kanade run on plain pixels or deep features. Note the zipping artefacts along the edges of
the large white rectangle. Our learnable variant is faster and leads to more accurate results.
The reader is invited to zoom in.

align because of the noise in dark regions and large saturated areas.
Figure 6.11 compares the advantage of running the Lucas-Kanade algorithm with
deep features and plain pixels in a real situation. Note the purple zipping artefacts
caused by faulty alignment before image fusion in the left image obtained with the
plain-pixel Lucas-Kanade algorithm. These artefacts vanish in the image on the
right using deep features.

6.5.5 Discussion

Choice of the prior function. An important component of our approach is the
image proximal operator Gω. Figure 6.12 shows a qualitative comparison of a prior-
free version, solely aligning and merging the frames, using the image gradients
soft-thresholding function derived from the classical TV-`1 prior, and our approach
with a learnable module. The TV-based version is significantly sharper than that the
one without prior. The parametric prior returns a better zoomed-in image, e.g.next
to the head and the dress of the statue.
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Table 6.3: Quantitative comparison of registration methods on synthetic data with
average and median geometric errors [73]. We compare MTB features combined
with sub-pixelic phase correlation [218], the pyramid Lucas-Kanade (PLK) algo-
rithm and our variant of PLK using deep features. The three algorithms are run on
the mosaicked images. On each benchmark, we outperform both vanilla PLK and
the MTB-based approach.

Model Geom (avg.) Geom (med.)

×1 - No noise - 11 raw frames

MTB + phase correlation 2.93 2.61
3 PLK iterations 1.32 0.97
3 PLK iteration +deep features (ours) 0.91 0.60
5 PLK iterations 1.47 1.10
5 PLK iterations + deep features (ours) 0.88 0.61

×1 - Noise - 11 raw frames

MTB + Phase correlation 3.58 2.99
3 PLK iterations 2.77 2.40
3 PLK iteration +deep features (ours) 1.25 0.95
5 PLK iterations 2.76 2.10
5 PLK iterations + deep features (ours) 1.40 1.00

×4 (aliasing) - Noise - 11 raw frames

MTB + Phase correlation 5.93 4.67
3 PLK iterations 3.82 3.58
3 PLK iteration +deep features (ours) 2.04 2.03
5 PLK iterations 3.87 3.50
5 PLK iterations + deep features (ours) 2.62 2.17

Robustness on real images. A key advantage of our approach is the accuracy of
its registration module, as detailed on Table 6.3 and illustrated in Figure 6.11. We
have remarked that this module is particularly efficient for aligning raw frames with
the same exposure, as illustrated by Figure 6.7 in the context of SR with factor ×4.
Given a burst of raw photographs including moving objects with reasonable mo-
tion during exposure, e.g.the pedestrian in the figure, we can predict high-quality
HR image well-aligned with the reference frame whereas the competitors may in-
troduce ghosting or colored artefacts. Notwithstanding, we have also noted that
non-rigid motions in the raw frame burst may lead to blur in the final predicted
image. For instance, Figure 6.10 compares the restoration results from [226], [227]
and our model for a crop featuring a waving flag, i.e., a non-rigid motion. We select
K = 3 images with EV values of {-2.4,0,2.4} EV for the CNNs and for our model.
The CNNs trained to remove ghosting artefacts accurately align the flag with the
reference frame whereas our prediction is blurry in the red section of the flag. This
may stem from the fact that multi-exposure image registration is a very challenging
problem and that we have not such non-rigid motions in our training data. For a
better deghosting, the injection of non-rigid motion in the training data, similarly
to the dataset introduced in [225], is an interesting future research direction.

6.a Appendix
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Low-resolution No prior

TV-`1 Ours

Figure 6.12: Visual comparison of the impact of the prior for joint HDR and ×4 SR. We fuse
K = 20 images in this example. We note for the three methods effectively suppress the noise
present in the original LR frames. However, our learnable prior (here with 300k parameters)
yields a higher quality image. The reader is invited to zoom in.
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6.a.1 Ablation Studies

In this section, we provide additional experiments to better understand the impact
of our method’s components.

6.a.1.1 Learning the Image Prior

We quantitatively validate the choice of a parametric proximal function in Eq. (6.11)
to address joint HDR and SR by a factor of 4. We compare the proposed CNN-
based implementation with the the classical total-variation `1 (TV-`1), for instance
used by [242], and a simple weighted least-squares problem, i.e., without prior. We
generate 266 bursts of K = 9 images with exposure values in [−3, 3]EV. Table 6.4
shows average PSNRs for methods embedding no prior (simple weighted least-
squares), TV-`1 prior and three variants of the CNN G with parameter ω of sizes
30K, 300K and 3M. The variants with the parametric priors are trained according to
the protocol described in the previous section. This table shows, as expected, a clear
advantage of learnable penalty functions over handcrafted ones, with a margin of
more than 4dB for the shallowest network and more than 7dB for the deepest one
over the TV-`1 variant. Note that the prior-free version is only 0.4dB below its TV-
`1-based counterpart, suggesting that machine learning is important to design an
efficient prior function to address joint HDR and SR restoration.

Table 6.4: Quantitative comparison of the choice of the prior over the total per-
formance of the method. Average PSNR on predicted linear HDR images jointly
super-resolved by a factor of 4 for typical handcrafted image priors and variants
of the proposed parametric one with several parameter sizes. The learnable ones
achieve the best scores overall by an important margin. The more parameters yields
the best PSNRs.

Prior PSNR

No prior 26.15
TV-`1 26.51
Tiny (30k) 30.71
Small Prior (300k) 32.56
Large Prior (3M) 34.18

6.a.1.2 Alignement Sub-Components Evaluation

We quantify the impact of each components of the alignment module in Table 6.5 by
measuring the mean PSNR of predicted HDR images with resolution enhanced by
×4. We generate 266 raw bursts with 11 frames for each burst with the same proto-
col than the other experiments. We decompose it into three bricks: using bracketed
images, the confidence function g and running the pyramid Lucas-Kanade (PLK) al-
gorithm on deep features. Adding each component one-by-one gradually increases
the mean PSNR, the maximum value being naturally reached when the three com-
ponents are gathered. Note that the PLK algorithm run on deep features brings an
improvement of about +2dB, which alone is a better contribution than the total of
+1.3dB by combining bracketed images and the confidence function g. We also give
an upper-bound to this performance by running a version of our model where we
give the ground-truth motion to align the images. Such an oracle model achieves
an average PSNR of 34.18dB compared to the 31.42dB of the best setting where the
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Table 6.5: Ablation study for the alignment module. We report mean PSNR on HDR
images with ×4 super-resolution. The first configuration (#1) uses a burst but no
bracketing (constant exposure). The fourth configuration (#4) is the setting we use
in practice, with bracketed exposures, the confidence function g and the pyramid
Lucas-Kanade algorithm run on learnt features. Adding these three components
one by one gradually improves the mean PSNR, showcasing the importance of each
module. The fifth (#5) configuration is an upper bound where we use the ground-
truth motion (and thus do not need LK with deep deatures).

Settings #1 #2 #3 #4 #5

Bracketing X X X X
Confidence function g X X X
LK with deep features X
Oracle motion X

PSNR 28.50 29.28 29.77 31.42 34.18

Figure 6.13: Average PSNR on predicted HDR images with spatial resolution increased by
(×4), from a varying number of frames in the burst (from 3 to 30). Our approach benefits
from any additional input frame, especially for less than K = 11 images. The average PSNR
is evaluated from 3 seeds.

motion is estimated instead. It suggests that there is room to improvement but each
sub-components in the alignment actually helps to further narrow the gap with the
oracle model.

6.a.1.3 Performance with the Number of Frames

We compare the performance of our approach with respect to the number of frames
in the burst for joint SR and HDR on synthetic data. Figure 6.13 shows the mean
PSNR taken over 3 seeds for bursts of length ranging from 3 to 30. Our model
greatly benefits from additional frames for burst sizes smaller than 11; Starting
from 3 images and a PSNR score of 28.6dB, we gain up to 4dB when accumulating
11 frames. Beyond this number, we gain an extra decibel by accumulating more
than 20 frames. It is consistent with typical bracketing techniques, e.g.[210, 211],
for which more images means better noise removal in the dark regions. Thanks to
the learnt robust registration algorithm and prior, the performance of our approach
hardly falls down when accumulating more and more images, unlike typical multi-
image algorithms that may accumulate registration, e.g.as noted by [52].
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Table 6.6: Comparison of inference speed for different models for burst super-
resolution. We have benchmarked the inference speed of different models for pro-
cessing a burst of 14 12Mpixel raw images (Pixel 4a) on a single Titan RTX GPU. We
have used the official implementations released by the authors without any modifi-
cation. We have not optimized inference speed (yet) using with standard tools such
as mixed precision and/or model compression.

Model # parameters Runtime
Memory
(200x200)

Memory
(400x400)

Competitors (×4)
[53] 13,000k 40.0sec 3.5Gb 11.5Gb
[241] 26,000k 9.5min 3.5Gb 12Gb

Ours (×4)
Very Small 60k 13.4sec 1.2Gb 2.8Gb
Small 250k 20.0sec 1.2Gb 2.8Gb
Large 3,000k 38.2sec 1.3Gb 3.1Gb

Ours (×2)
Very Small 60k 4.7sec 800Mb 1.2Gb
Small 250k 6.2sec 820Mb 1.2Gb
Large 3,000k 10.7sec 860Mb 1.3Gb

6.a.1.4 Computational Speed

Our algorithm leverages optimization and machine learning techniques, which
leads to a dramatically smaller number of parameters than state-of-the-art CNNs
for tasks such as super-resolution. We evaluate the computational speed and mem-
ory consumption of our model embedding three variants of the learnable opera-
tor G with varying number of parameters. We compare our three versions of the
proposed network with that of [53] and [241], the best performers for ×4 SR in
Table 6.1. We run this five-way comparison within the same python environment,
e.g.same version of Pytorch, and on the same GPU (Nvidia Titan RTX) for fairness.
We show in Table 6.6 that our hybrid method exceeding the SR state of the art in
the previous paragraphs, is also the lightest in the panel. The method of [241] has
26 million parameters and that of [53] about 13 million parameters whereas our
deepest model has 3 million of them, i.e., four time less than [53]. This gap in size
of parameter is due to the building blocks in the competitors’ architectures. Indeed,
they heavily rely on memory-greedy attention modules, whereas our implementa-
tion of G is based on the fully convolutional U-net architecture of [185, 51]. This
table also shows that, for resolution factor of ×4, our approach is much faster than
the state of the art, while coping with them according to Table 6.1. In this table, our
“Small” model is less than a decibel below [241]’s model but with an inference time
forty times smaller on the same GPU. We are also four times faster than [53]. Like-
wise, our models require three to four times less GPU memory than our selected
competitors, which is an important designing point for deploying such a technol-
ogy in commercial software running on consumer-grade devices. We also report
in Table 6.6 information about the ×2 case since in many situations pushing the
resolution further brings little improvement, e.g.Figure 6.8 and the analysis of [52].
In this configuration, our model requires even less memory to process 400× 400
tiles and may run on modest GPUs.
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6.a.1.5 Limitations

Albeit our approach favorably addresses HDR, SR and joint HDR and SR against
the state of the art, we have noted throughout our experiments a few limitations in
certain cases that may degrade the performance of our model.

Lack of robustness to non-rigide motion for joint HDR and SR. We have ob-
served that our model which performs joint HDR and super-resolution are less ro-
bust to non-rigid motion than our models performing only burst super-resolution.
An example of artefacts that we typically get is shown in Figure 6.10 in the case of
the moving flag.

Saturated areas. In the pictures shot with a smartphone, we have sometimes no-
ticed color halos next to saturated areas (Figure 6.14). They may be caused by the
fact that the corresponding very high level of contrast is hard to simulate in our
synthetic data.

Hot pixels. The method is not trained to correct hot pixels, that may locally alter
HDR imaging techniques. We assume that these pixels are corrected upstream in
the camera pipeline, which is a classical assumption in the field.

6.a.1.6 Supervision with Various Loss Functions

In this subsection, we propose an ablation study to assess the effectivness of dif-
ferent supervision loss instead of the basic L1 loss. We use the same loss function
as the one described in [268], which gives a tone curve ψ(x) = log(x + ε) which
more strongly penalizes errors in dark regions. Results of the ablation study are
presented in Table 6.7. Our experiment that the log loss gives better result in term
of µ-psnr. The selection of the right supervision loss for the training of our model
is an interesting direction for future research.

loss psnr (dB) µ-psnr (%) µ-ssim (%)

L1 36.52 38.08 0.9682
log(ε = 10−1) 37.04 37.86 0.964
log(ε = 10−2) 37.71 38.70 0.967
log (ε = 10−3) 13.74 8.07 0.199

Table 6.7: Super resolution factor x1, ablation study with different training loss.

6.a.1.7 Ablation HDR with No Motion

In addition to Table 6.2, we provide in Table 6.8 below a HDR fusion evaluation
of the same methods, but on a variant of the synthetic test set where we have not
simulated motion between frames. In this new table, our method still achieves the
best HDR-VDP scores for brackets of both K = 3 and K = 11 images, but with
a margin of only 1 point over our implementation of [211]. We can conclude that
both approaches achieve similar results. However, when we compare these margins
that of 3 points in Table 6.2 between our approach over [211], it suggests that our
technique is more robust to alignment failures than the pure bracketing technique
of [211].
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Darkest frame Medium frame Lightest frame Our reconstruction

Figure 6.14: Color halos in very bright areas and saturated regions. Because all input views
are saturated in the neighborhood of the star, key info required to correctly reconstruct the
image there is missing, leading to severe artefacts there.

Table 6.8: Quantitative comparison of various algorithms for HDR imaging – we
do not perform super-resolution in this experiment – on a synthetic dataset con-
sisting of bracketed raw bursts simulated with our pipeline. Our method directly
takes raw frames as an input. The other methods process RGB frames obtained
here with VNG demosaicking. Our algorithm quantitatively outperforms the other
HDR methods on this dataset, which is not surprising as it is trained leverage the
information lost in the raw to rgb conversion

Method psnr (dB) µ-psnr (dB) ssim µ-ssim (dB) HDR-VDP2(Q)

K=1 frame

Liu et al. [234] 19.98 24.25 0.608 0.687 56.51
Santos et al. [233] 22.05 25.80 0.635 0.699 61.69

K=3 frames

Wu et al. [226] 26.42 27.51 0.765 0.774 61.04
Yan et al. [227] 26.22 27.01 0.752 0.768 60.37
Hassinof et al. [211] 30.55 31.26 0.874 0.878 67.77
Ours 34.29 34.31 0.945 0.934 68.63

K=11 frames

Hassinof et al. [211] 33.80 33.43 0.917 0.927 68.86
Ours 38.73 38.56 0.973 0.969 70.05

6.a.2 Implementation Details

We include below details about our datasets and implementation for reproducibility
purposes. See also Table 6.6 for the number of parameters used in different variants
of our method.

Data Generation. Given a collection of sRGB images, we construct bursts of LDR
low-resolution raw images and HDR/high-resolutions RGB targets. For the gener-
ation of realistic raw data from sRGB images, we follow the approach described in
[53], using the author’s publicly available code on the training split of the Zurich
raw to RGB dataset [203]. The approach consists of applying the inverse RGB to
raw pipeline introduced in [254]. For the training of our model, we generate bursts
of 11 frames of size 256x256 with random motions. Displacements are randomly
generated, applying random translations of ±6 pixels and random rotations of ±1◦.
Frames are downscaled with bilinear interpolation in order to simulate LR frames
containing aliasing.
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Figure 6.15: A diagramatic view of our model.

We then apply two different random gains in order to simulate frames with varying
exposure. First, a random gain in the range [-5ev,5ev] is applied to the ground-truth
image, in order to simulate 32-bit ground-trugh images with a large dynamic. We
then apply a different gains in the range [-3ev, 3ev] for each image of the burst in
order to simulate images with different exposure times. This results in synthetic
bursts with different saturated areas and signal to noise ratios. Synthetic noise is
added to the frames. The noise levels are sampled following the empirical model
of Figure 6.3. Finally, color values are discarded according to the Bayer pattern.

Validation Split In order to perform further comparison and conduct the ablation
study, we build a validation set by randomly extracting 266 images from the Zurich
raw to RGB dataset [203].

Model. We summarize in Figure 6.15 our proposed pipeline. In all our experi-
ments, we unroll 3 iterations of the HQS algorithm.

Deep Prior. We give more details about the architecture of the deep prior used in
our experiments. For all our experiments, we use a smaller variant of the ResUNet
architecture introduced in [185] for single-image super resolution. This architecture
involves four scales, each of which has an identity skip connection between down-
scaling and upscaling operations. Downscaling operations are implemented using
2x2 strided convolution while upscaling are implemented with pixel-shuffling. Each
residual block is made of two 3x3 convolution layers and ReLU activation combined
with an identity skip. For each scale we apply a cascade of 2 residual blocks. The
network has respectively 32,64,128,128 channels for each convolution per scale.

Model variants. We also run experiments with an even smaller version of the
network with 32 features per channel (dubbed small) and 16 features per channel
(dubbed tiny).

Training procedure We minimize Eq. 6.13 using Adam optimizer with learning
rate set to 10−5 for 400k iterations. We decrease the learning rate by a factor 2 every
100k iterations. The weights of the CNNs are randomly initialized with the default
setting of the PyTorch library. Our approach is implemented in Pytorch and takes
approximately 2 days to train on a Nvidia Titan RTX GPU.



Chapter 7

Dense Image Registration and 3D
Reconstruction from Bursts

Chapter abstract: This paper presents a novel approach to the fine alignment
of image bursts captured by a handheld camera, with applications to image
denoising, super-resolution, and 3D scene capture. Unlike conventional meth-
ods, it does not require discrete correspondences, nor does it rely on 2D (e.g.,
piecewise-affine) transformations, as it directly optimizes the depth and surface
orientation at each pixel for a reference image and the extrinsic parameters of all
other cameras relative to it. Rough (16× 16) and noisy initial depth estimates,
as provided nowadays by most high-end smartphone cameras, can be used for
additional robustness if necessary. Extensive experiments with synthetic im-
ages demonstrate that the proposed method outperforms the state of the art by
a significant margin. Preliminary experiments with real image bursts, including
denoising, super-resolution, and 3D reconstructions are also presented.

B. Lecouat*, Y. Dubois de Mont-Marin*, T. Bodrito*, J. Mairal, J. Ponce. Dense
Image Registration, Camera Pose and Depth Estimation from Bursts. This pa-
per is under review and has not yet been published on Arxiv.

7.1 Introduction

We address the problem of dense registration, pose estimation, and 3D reconstruc-
tion from image bursts captured by a handheld camera, with small motions. Our
method estimates optical flows, camera poses, and depth maps which can be used
for multiple applications, including denoising, super-resolution, hdr imaging and
3D reconstructions.
In burst photography, a camera captures a short sequence of images (e.g. 10 frames),
in rapid succession (e.g. one second), possibly with different camera settings. Ex-
ploiting the fact that, for handheld cameras, the images are taken from slightly
different viewpoints, bursts can be leveraged for image enhancement as demon-
strated by recent approaches to high dynamic range imaging [80] with exposure
bracketed, night photography[20], deblurring [269], or super-resolution [79]. Bursts
can also be exploited to recover the 3D structure of the captured scenes. [270, 271,
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272], shows that it is possible to exploit the parallax in the scene to infer its 3D
structure.
A broad family of methods can perform image registration and 3D reconstruction
from image bursts, ranging from dense image alignment to structure from motion.
However, these methods generally do not fully leverage the specificity of burst
photography to their advantage and may therefore be suboptimal for the task. For
example, accurate registration is challenging for real bursts captured in the wild,
and typical methods [80, 79] align images pairwise and independently with a ref-
erence frame. Nevertheless, the quality of the alignment can severely impact the
quality of the enhanced image by creating ghosting or zipping artifacts [3] when
the registration algorithm does not align frames with sufficient precision. 3D recon-
struction from bursts is also challenging due to small baselines [270] (i.e., the dis-
placement of the camera between consecutive frames), and therefore requires very
fine alignment. However, small motions also offer some opportunities: it makes
matching easier and allows the use of a depth map as a compact and convenient
representation of the 3D scene, as explained in [272]. This paper introduces a novel
optimization-based algorithm specifically tailored for aligning -and inferring 3D
structure- from bursts.
We propose a novel approach to dense burst registration that leverages the multi-
image setting by directly modeling the scene structure and the camera poses. To
do so, a good choice of parameterization for aligning frames is vital. Homogra-
phies are widely used since they are both simple and effective models for planar
or distant scenes or when the motion consists mainly of a pure rotation about the
optical center, with little parallax. However, they are limited to scenes with little 3D
relief [26]. Complex motions can, of course, be approximated by piecewise-simple
parametric transformations defined on small tiles [272],[79] or optical flow [273],
mitigating the parallax issue. But the price to pay is a large number of parame-
ters to fit, which may impact robustness. Our optimization-based method estimates
the camera’s pose and 3D scene structure by jointly minimizing the photometric
reprojection errors in a reference frame. The pose parameters are fitted individu-
ally for each frame, while structure parameters are fitted locally in the images but
shared among all the views. The flow between frames can then be computed by
reprojecting points in other views. This modeling requires a much smaller num-
ber of parameters than block-parametric or optical flow while providing sufficient
expressivity level to represent static scenes accurately.
As no existing multi-view stereo dataset we are aware of, exactly covers our typi-
cal use cases, we validate our approach with synthetic bursts built with rendering
software (the proposed dataset will be made publicly available). Our model turns
out to be very versatile in the context of image bursts with small motion; it gives
state-of-the-art performance compared with compelling methods specifically de-
signed for optical flow [274], pose estimation [272, 275, 276], and depth estimation
[271, 275]. Our results also suggest that, in the small movement case, a dense for-
mulation is very beneficial because many concurrent methods are based -at least
partially- on sparse key points [272, 275, 276]. Finally, to validate our approach
with real-world data, we demonstrate applications with real bursts captured with
a Pixel 6 pro smartphone to night photography denoising, super-resolution, and
dense 3D reconstructions.

Contributions. In the context of burst imagery, we propose a versatile multi-frame
registration method that excels at various tasks. (1) our algorithm gives state-of-
the-art dense alignment metrics on synthetic data: we outperform state-of-the-art
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Figure 7.1: Proposed algorithm: Our optimization-based method estimates the camera’s pose
and 3D scene structure by jointly minimizing the photometric reprojection errors in a refer-
ence frame, in a coarse-to-fine fashion.

deep-learning-based methods. The flows estimated on real data can be used for
tasks requiring fine alignments, such as burst super-resolution. (2) Our algorithm
also gives state-of-the-art metrics for camera pose estimation. (3) Our method is
also competitive for depth estimation with small motions. We manage to capture
the structure of 3D scenes by only exploiting bursts with small baselines. (4) Finally,
we also present a novel fixed-point algorithm to infer depth maps in new camera
positions. We use this algorithm to estimate the reverse optical flows and warp
reference views onto other views, which is required by downstream tasks such as
super-resolution or low-light photography.

7.2 Related work

Burst photography. Burst photography is a technique that involves capturing a
sequence of images to improve the overall quality of a photograph by reducing
noise, enhancing details, and improving dynamic range. Algorithms are generally
built around a registration algorithm to align the frames. Recent research has led
to exploring machine-learning techniques for burst photography based solely on
deep-learning models that do not necessarily rely on a registration preprocessing
step. However, that class of algorithms suffers from several limitations, which make
their integration on embedded devices challenging due to computational cost and
lack of robustness, as pointed out in [56].

Multi frame image registration. Related work has given relatively little attention
to image registration with multiple frames. A straightforward approach often used
in practice is simply aligning frames with a reference frame as in [79, 80]. However,
it is possible to leverage the multi-view setting to improve the registration qual-
ity as in [277, 278, 279], which proposed different optimization-based methods for
multi-view image registration, but codes are not publically available. Registration
of frames with heterogeneous content is also crucial for burst photography, for ex-
ample, in focus bracketing or dynamic range imaging, where the saturation zones
and signal-to-noise vary among different areas. [77] proposed new algorithms in
this setting that can produce visually pleasant fused images.

Depth reconstruction from small motions. Popular 3D reconstruction methods
rely on geometric methods such as structure from motion (SfM) [276]. These meth-
ods utilize geometric constraints and rely on key point correspondences to recon-
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Figure 7.2: Left: Image formation model with a patch and its local tomography image. Right:
fixed-point algorithm to evaluate the reverse flow in a camera (Ck) from the one in (C0) given
by our method.

struct a sparse 3D scene. Dense 3D representations can then be estimated based
on the sparse reconstruction, as Colmap software [276] does. Bundle adjustment
is a crucial step for refining a scene’s estimated 3D structure and camera poses. It
operates on 2D image key points, corresponding 3D points, and camera calibration
parameters. The goal is to minimize the reprojection error by iteratively optimiz-
ing the 3D structure and camera poses, resulting in a more accurate reconstruction
of the scene. 3D reconstruction from Methods have specifically been tailored for
small motion scenarios. When dealing with small movements, achieving accurate
3D reconstruction relies on employing motion estimation techniques that are highly
precise, and depth map has emerged as a popular structure representation in this
setting. Im et al. [280] adapted SfM to small motion. [272] efficient method using
feature tracking for pairwise key points and bundle adjustment algorithms adapted
to small motions. They also estimate the intrinsic parameters of the camera as well
as distortion parameters to fit the data better. [270] uses a neural depth model
and IMU to initialize the camera poses and lidar measurements to initialize the
depth map. [270] makes it non-necessary to initialize with a depth map model even
though it may still give better results with the initialization.

7.3 Method

7.3.1 Image Formation Model

We consider a rigid scene described by a piecewise surface and K + 1 internally
calibrated pinhole cameras (Ci)i=0..K. A point u in the (C0) camera plane is the
projection of a point x of the scene surface. We denote by π, the affine plane
tangent to the scene in x parameterized, by its (non-unit) normal n such that π =
{y ∈ R3, n>y = 1}. A patch around u is the projection of a patch around x in π,
and its image in the camera (Ck) is given by a homography uniquely defined by the
plane π and the extrinsic parameters Rk, tk of the other camera (Fig. 7.2 left).

7.3.2 Minimization Problem

The parameters of our model are the extrinsic parameters (Rk, tk) for k = 1..N
of the camera (Ck) relative to the reference camera (C0) and the plane normal ni
associated to the point ui for i ∈ G a regular grid in the reference camera plane.
To estimate the flow induced by the scene and the camera poses, we minimize the
photometric error between the reference image on each patch and the other images
on patches obtained by the local homography. The previous model is not valid at
occluding boundaries. We handle this phenomenon using a robust loss ρ as in [281].
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Our minimization problem is:

min
n,R,t

1
2

K

∑
k=1

∑
i∈G

∑
u∈P(ui)

ρ(|I0(u)− Ik(Ĥi,k(u)|2), (7.1)

where P(ui) denotes the set of pixels constituting the patch centered in ui and Ĥi,k
is the homography for the patch i and the view k defined in homogeneous fashion
by the 3× 3 matrix:

Hi,k = Rk + tkn>i , (7.2)

as, in [282, 271], which rightly notes that ni is not a homogeneous vector defined
up to scale and has three full degrees of freedom. So does tk. On the other hand,
and as usual, there is a global scale ambiguity since replacing every tk by λtk and
every ni by λ−1ni does not change the homography and thus the loss. Note that
if we take patches of size 1, with mean P(ui) = {ui}, we recover the formula of a
pixel-wise loss as used, for example, in [272]. Such a loss only captures the depth
corresponding to the points on the G grid points. On the contrary, estimating the π
plane allows a better expressiveness of the model and better optimization stability,
as shown in the ablation study presented in Appendix 7.a.5.1.

7.3.3 Numerical Procedure

The scale ambiguity suggests that we should fix one of the variables of one of
the tk or ni at an arbitrary non-zero value. However, on the one hand, there is
no guarantee that one of the components of one of the tk is non-zero, and on the
other hand, fixing a value of one component of one of the ni will not constrain
well the problem since it could be treated as an outlier in the robust loss. This
observation leads us to a block coordinate descent with one block constituted of
the extrinsic parameters (Rk, tk)k=1..N and one block with the structure of the scene
(ni)i∈G. Indeed, each optimization sub-problem has no more the problem of a scale
value which can be arbitrary. The scaling factor then depends on the initialization
of the variables. In the case of small movements, it is reasonable to initialize the
translation values to 0. Therefore, it is necessary to have a good initialization of
the plane parameters, which can be computed from a coarse depth map when
initializing the planes as fronto parallel. We use a proximal Gauss-Newton (PGN)
for steps on the block (Rk, tk) for k = 1..N; and a gradient descent (GD) with Adam
momentum and adaptative learning rate for steps on (ni)i∈G.

7.3.4 Pose Estimation

To estimate the pose, we take advantage of the fact that (7.1) is a robust non-
linear least squares problem in Rk, tk to use an algorithm of type Gauss-Newton.
We parametrize the poses by their twist in exponential coordinates on the group
SE(3): [Rk, tk] = Exp(ξk) where we have the twist ξk = [!k, vk] and Exp is the
exponential of the group SE(3). The parameterization in exponential coordinates
is relevant in the case of small motion. [272] even uses a linear parametrization
[Rk, tk] = [I3 +[!k]×, vk] which corresponds to a Taylor series at order 1 of the group
exponential. However, as our least squares problem is non-linear, keeping a more
expressive non-linear parameterization of the poses for which jacobians in close
form exist is relevant [283] (see Appendix 7.a.5.1 for a comparison of the two param-
eterizations). Noting rk = [I0(u)− Ik(Ĥi,k(u)] the residual vector of the photometric
error for every point of every pixel patch for a view in camera (Ck) and abusing
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notation we note rk,j its coordinate terms. We take advantage of the fact that rk de-
pends only on ξk and by following the procedure of the proximal algorithms [199],
we use Gauss-Newton algorithm to solve K independent series of minimization
problems of the form:

min
ξk

=
1
2 ∑

j
ρ(r2

k,j) + β‖ξk − ξ∗k‖2
2, (7.3)

where β is the proximal factor, and ξ∗k is the last twist of the previous problem
in the series. Between each problem, we adjust the proximal factor β ← β/2; see
[199] for more details on the proximal algorithms. For Gauss-Newton steps, as in
[281], we use Hk = J>rk

diag(ρ′(r2
k,j)j) Jrk

+β I6 to approximate the loss hessian and

Gk = − J>rk
diag(ρ′(r2

k,j)j)rk + β(ξ∗k − ξk) as the opposite of the gradient where Jrk
is

the Jacobian of the residuals whose closed form is calculated in appendix 7.a.1. We
take the step ξk ← ξk + skdk where dk is a solution of the linear problem Hkx = Gk
and sk is a step size following a backtracking line search using Armijo’s stopping
criterion.

7.3.5 Scene Estimation

For the estimation of the scene structure, we perform two reparametrizations. First,
we estimate the ni on a Gv grid having a resolution twice as low as G, and we
recover the ni on the rest of the grid with a bilinear interpolation. This choice acts
as an implicit spatial regularization as each variable will intervene in estimating
several patch planes. Second, noting ni = [ai, bi, ci], we optimize instead the vari-
ables γi = ci + [ai, bi]

>ui, αi = ai/γi, βi = bi/γi. This change of variable comes from
centering and normalizing the parametrizations so that the optimized variables are
coherent in any point of the grid and, in turn, that the spatial regularization be-
haves correctly; see Appendix 7.a.3. We use autograd implemented in pytorch [145]
to compute the gradient of the loss (7.1) with respect to the variables [αj, β j, γj]j∈Gv .
We use the optimization method with momentum and adaptive learning rate Adam
[130] for the gradient steps. To stabilize the gradient descent on the scene structure,
we add penalties. First, a total variation on the variable optimization grid as in
[284] and second, an l1 penalization centered in 1 on the determinant of the flow
induced by the scene structure as detailed in appendix 7.a.2. The purpose of this
penalization is to favor the rigidity of the flow when the gradient of the loss is not
informative enough.

7.3.6 Coarse to Fine Approach

Since we use a photometric loss, the gradients and jacobians obtained depend on
the spatial gradient of the Ik images and therefore contain sub-pixel information.
When the alignment error is over-pixelated, this can cause a convergence problem.
To overcome this problem, we use a coarse-to-fine approach as in [285, 281]. For
this we solve, a succession of L problems images I(l)0 , I(l)k and grids G(l), G(l)

v of a
lower resolution of a factor 2L−l . Note that we adopt this coarse-to-fine approach
only for the steps of the scene estimation block. We still use high-resolution images
and grids for the pose block steps. We use a bilinear sampling to pass from coarse
to fine estimates of the structure when we go from one block to the other or from
one resolution stage to the next. As we only apply the coarse-to-fine approach to
the scene structure block, the optimized losses are different for the two coordinate
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blocks until the last stage of the coarse-to-fine approach. However, the first stages
constitute a strategy to obtain a good initial guess for the last stage optimization
problem, corresponding to the original problem (7.1) and is a well-posed block
coordinate descent where the two blocks use the same loss. We illustrate the overall
method in Fig. 7.1.

7.3.7 Usage in Downstream Tasks

We need a pixel-wise flow to use our algorithm’s output in a downstream task. We
choose to take, for each pixel, the local homography evaluated in the center of the
pixel patch. The previous flow allows warping the image Ik in the camera (C0)
using a backward warp required by tasks such as denoising. For other tasks like
superresolution, we need to be able to do the inverse warp, i.e., warp the image I0
in each camera (Ck). Doing so with the previous flow and using a forward warp is
unstable and may create artifacts in the reconstructed image. Instead, we introduce
a fixed point algorithm that estimates the normal map ni in the (Ck) cameras from
the one in (C0). With this normal map and noticing that the extrinsic matrix of (C0)
relative to (Ck) is [R>k ,−R>k tk], we can compute the inverse flow and in turn the
inverse warp using a backward warp. The algorithm is based on the fact that when
we compose the flow and the inverse flow on a regular point grid, we must obtain
a regular point grid. We present the details of the algorithm in Appendix 7.a.4 and
illustrated in Fig. 7.2 right.

7.4 Experiments

7.4.1 Synthetic Burst Simulation.

Method EPE
↓

RMSE
↓

NPE1
↑

NPE2
↑

NPE3
↑

Blender1 (small motion)

DfUSMC [272] * 1.4466 2.1723 0.5315 0.7488 0.8477
RCVD [275]* 5.9556 7.678 0.0957 0.2534 0.3763
Saop [271] * 9.7262 12.5891 0.101 0.2457 0.3402

Homography 2.8102 4.7107 0.4998 0.6627 0.7405
Farnebäck [273] 2.6852 4.8478 0.5299 0.6612 0.7278
RAFT [274] 0.9013 1.5396 0.7348 0.9069 0.9443
Ours 0.6013 1.2047 0.8392 0.9263 0.9526

Blender2 (tiny motion)

DfUSMC [272] * 4.1356 4.5676 0.2267 0.4278 0.5497
RCVD [275]* 0.4007 0.5316 0.8676 0.9825 0.9959
Saop [271] * 2.0430 2.3563 0.5684 0.7645 0.8424

Homography 0.3008 0.3772 0.9003 0.9921 0.9982
Farnebäck [273] 2.0892 3.8154 0.6480 0.7296 0.7642
RAFT [274] 0.4857 0.5765 0.8664 0.9857 0.9963
Ours 0.2713 0.3287 0.9348 0.9954 0.9999

Table 7.1: Optical flow errors. The optical flow was predicted from the extrinsic
camera parameters and depth maps for the models marked with an asterisk.

We required photorealistic bursts containing ground truth depth and camera poses
for evaluating our approach and concurrent methods, but existing public multi-
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Dataset Scenes Frames Std baselines
(m)

Std rotations
(deg)

Max depth
(m)

Min depth
(m)

Mean depth
(m)

Blender1 15 20 0.116 0.20 0.316 11.234 3.73
Blender2 10 20 0.010 0.29 1.92 19.453 6.21

Table 7.2: Main characteristics of the two proposed datasets.

view stereo datasets we are aware of lack the needed characteristics due to non-
static scenes or excessively large frame baselines that do not align with our specific
use cases. We generate two photorealistic synthetic datasets using CYCLES, the
path tracing engine of Blender [286]. We used a set of twelve publicly available
indoor scenes made by 3D artists, with detailed and varied scene compositions.
Ten scenes come from the Evermotion Archinteriors Vol.43 Collection [287], and
two scenes were freely available [288]. Each burst of the dataset consists of 20
frames, with a resolution of 512x512 pixels, a focal length of 50mm, and a sensor
size of 35mm. We skipped the post-processing denoising step at the end of the
rendering to avoid temporal flickering artifacts. Still, we mitigated the ray tracing
noise by using many samples (4096). The camera trajectories and orientations were
crafted as follows: a few keyframes were positioned manually to outline the global
path, and the other keyframes were obtained with Bezier interpolation. These two
datasets are made of small and tiny motions. Their characteristics are summarized
in Table 7.2.

7.4.2 Evaluation on Synthetic Data

We follow the standard practice to evaluate pose, depth, and flow as described in
[275, 169]. For all the methods, as depth estimation and pose are known up to an
unknown scale, we align the predicted depth and the ground truths using median
scaling. For pose evaluation, we compute the scale factor as s = arg mins ‖T− sT̂‖2,
where T =

[
t0, · · · , tN

]
. In addition, we use the canonic left-invariant distance in

SE(3) that combines rotational and translation parts in one quantity; see [289, 290]
for details. We report the distance between the ground truth pose and the estimated
pose. It reads d([R, t], [R′, t′])2 = ‖t′ − t‖2

2 + λ‖ log(R>R′)‖2
2. For λ, we use the

median value of the ground truth depth. ‖ log(R>R′)‖2 is the canonic metric on the
set of rotation SO(3) and is also reported independantly. Unlike other methods in
the literature [275], we chose not to present relative pose error (RPE) as a good RPE
may not correlate with good alignment metrics and rely on a time coherent burst. To
evaluate the ATE, we did not align the estimated poses with the ground truth poses
with rigid transformation, as is common in the SLAM community. Indeed, our loss
7.1 and, more generally, the flow 7.16 is not invariant by a solid transformation of
the poses. As the final goal of our method is alignment, performance evaluation up
to a rigid transformation would not be informative.
To assess the effectiveness of our approach, it is necessary, to begin with a rough es-
timation of the true depth map. In our synthetic experiment, we initialize the depth
map with using a very coarse version (16× 16) of the ground-truth depth map. We
compare our pose and depth estimation method with the method introduced in
[275], [271], and [272], using the codes publicly available online. We also initialize
the method from [271] with the same low-resolution depth map for a fair compar-
ison. For optical flows, we compare our method on the synthetic datasets with a
state-of-the-art deep optical flow method [274] (we register all frames with respect
to the reference), and also using a standard homography and the Farneback optical
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flow [273]. We also compute the optical flow errors for other concurrent methods
with estimated pose and depth maps using the pixel-wise projection model 7.16.
We also compare our method with a monocular depth estimation model [291] for
depth estimation, however, monocular methods can only estimate the depth up to
an affine transformation [291]. Thus, these methods are evaluated after an affine
registration. In our case, the goal is the alignment of frames, and the optical flow
is not invariant by an affine reparametrization, so it does not make full sense to
use this registration. The performances in the table 7.4 are obtained after only a
rescaling. For the comparison as a pure depth map, we still compared our method
and the others to Midas state of the art of monocular depth estimation—appendix
7.a.5.2 sum up the results. By leveraging the multi-image setting and the static scene
hypothesis, our method consistently provides better results than [274] in terms of
flow accuracy. We also outperform other methods for both pose and depth estima-
tion. We note that [271] gives poorer results than other methods in this setting. We
expect it to be because this method is designed to handle very small motions which
may be smaller than the ones simulated in our experiments.

Method Left l2
(m)↓

ATE
(m) ↓

Geom
(m) ↓

Biinvrot l2
(deg) ↓

Left l2
(m)↓

ATE
(m) ↓

Geom
(m) ↓

Biinvrot l2
(deg) ↓

Dataset Blender1 (small motion) Blender2 (tiny motion)

Colmap [276] 7 7
DfUSMC[272] 0.0117 0.0108 0.0094 0.1948 0.0046 0.0026 0.0024 0.1918
Saop [271] 0.0274 0.0229 0.0204 0.6369 0.0078 0.0043 0.0040 0.2678
RCVD [275] 0.0168 0.0162 0.0140 0.2158 0.0168 0.0162 0.0140 0.2158
Ours 0.0032 0.0028 0.0019 0.0727 0.0020 0.0019 0.0018 0.0303

Table 7.3: Pose errors metrics on the two proposed synthetic bursts datasets.

Method Abs rel ↓ Sqr rel ↓ RMSE↓ Delta 1↑ Delta 2 ↑ Delta 3 ↑
Blender1 (small motion)

Colmap [276] 7
DfUSMC[272] 0.2107 0.4864 0.9683 0.7723 0.8877 0.9409
Saop [271] 0.5818 1.8768 1.7900 0.3958 0.6009 0.7198
RCVD [275] 0.3111 0.5382 1.2368 0.5294 0.814 0.9524
Ours 0.1544 0.2229 0.9258 0.7881 0.9544 0.9911

Blender2 (tiny motion)

Colmap [276] 7
DfUSMC[272] 0.3093 0.9543 2.0499 0.5722 0.7785 0.9187
Saop [271] 0.2936 0.8326 2.002 0.5794 0.7976 0.9263
RCVD [275] 0.1898 0.3492 1.3745 0.6726 0.8816 0.9693
Ours 0.2496 0.6107 1.8778 0.5834 0.8754 0.9818

Table 7.4: Depth errors metrics on the two proposed synthetic bursts datasets.

7.4.3 3D Reconstructions Quality on Synthetic and Real Bursts

We illustrate the high quality of depth reconstruction that our method can achieve
on real scenes. To perform 3D reconstruction we feed or solver with RAW image
bursts shot with a Pixel 6 pro smartphone. The raw images were demosaicked
with simple bilinear filtering and then processed by our model, following the same
procedure as described in [271]). We also feed our model an initial low-resolution
depth map. We present in comparisons the depth map computed with a monocular
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method [291], RCVD [275], Saop [271] and DfUSMC [272]. We also illustrate depth
map reconstructions on synthetic data from our dataset. Our depth map can have a
noisy aspect on a texture-less structure. This is a normal feature as our optimization
is not well conditioned on uniform surfaces as small variations in inferred depth
will have no effect on the reprojection photometric loss. This noisy effect can be
mitigated by choosing larger spatial regularization coefficients. But this trades with
lower performance in terms of flow and pose metrics on synthetic data. We ob-
served that no spatial regularisation plan parameters give the best results for image
alignment and pose estimation. Reconstructed depth maps are displayed in Figure
7.3 and Figure 7.4.

Learning based Optim. based

Ref. image Midas [291] RCVD[275] DfUSMC Ours Ours + reg.

Figure 7.3: Depth estimation from real bursts. We compare the learning-based method and
optimization. We present ours result w/o regularisation (Ours) and with determinant penal-
ization 7.3 (Ours + reg).

Learning based Optim. based

Ref. image Midas [291] RCVD[275] DfUSMC Ours

Figure 7.4: Another example of depth estimation from real bursts. Our method recovers
more details for the depth than learning methods but also from some artifacts on the floor
that look like a chess board.

Learning based Optimization based

Ref. image Groundtruth Midas [291] RCVD[275] Saop [271] DfUSMC [272] Ours Ours + reg.

Figure 7.5: Depth estimation from synthetic bursts. It is one of the scenes generated with
Blender used in the dataset Blender 2.

7.4.4 Low-Light Photography on Real Bursts

We demonstrate the robustness and flexibility of our alignment method in the case
of low-light photography. This setup is demanding because low signal-to-noise ra-
tio frames must be aligned. We shot night burst with low light choosing a short ex-
posure time and high ISO to mitigate motion blur, with a Pixel 6 pro smartphone.
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We then align the frames with our method and with concurrent alignment algo-
rithms. We use a simple homography and a dense optical flow using the Farneback
algorithm [273]. We use the implementation from opencv [292]. Then, to perform
burst denoising and increase SNR, we average the aligned frame. We do not focus
on the fusion of the frames as we aim to highlight the registration quality offered
with our method. A better fusion algorithm may be chosen to alleviate artifacts
and improve the overall image’s quality; see, for example, the works [20, 80] as a
reference. We initialized our method with a low-resolution depth map from the
smartphone. We visually compare our results in Figure 7.6. We observe that due
to the nonplanar nature of the scene, the homography fails to efficiently align ob-
jects in the foreground such as the plant, and objects in the background (e.g. the
books) as the denoised image has a blurry aspect. On the other hand, the optical
flow model is more flexible and manages to align objects both in the background
and foreground. However, it may lack robustness, and some part of the image is
not well aligned, such as the white book in the background or the white cup in the
foreground.

Ref. image Noisy Homography Farneback[273] Ours

Figure 7.6: Burst denoising for night photography on real bursts exploiting alignment of
various algorithms. Left: Full image with bounding boxes highlighting the region of interest.
Top line: background region is misaligned for concurrent methods. Bottom line: cup is
misaligned for other methods. Homography misaligned the plant as well. Best seen by
zooming on a computer screen.

7.4.5 Super-Resolution on Real Bursts

To showcase the ability of our method to produce fine alignments on real images,
we perform burst super-resolution (SR) with our alignments. We use the popular
inverse problem framework employed in [78, 3] to achieve the task. To recover the
high-resolution image x from a set of K noisy and low-resolution observations yi
with i ∈ [0, K] we solve the minimization problem minx ∑K

i ‖DBWix − yi‖2
2, with

a gradient descent algorithm. D is a decimation operator which reduces spatial
resolution, B is a blurring operator, and W is a warp parametrized by the optical
flow. In our experiments, DB is chosen as the average pooling operator following
[3]. The gradient can be derived as ∑K

i W>i B>D>(DBWix− yi). The adjoint opera-
tor WT of the warp is implemented in our using the backward implementation of
gridsample operator available in PyTorch. The optical flow to warp the reference
high-resolution image x candidate is estimated in two steps using our method and
then the fixed point algorithm presented in Sec. 7.3 to infer the motion field of
interest. We perform SR on demosaicked RAW frames with bilinear filtering. We
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visually compare our results in Figure 7.7. Our algorithm is able to recover fine
details, including, for instance, the fine texture on the rum bottle or the hair of the
doll, that were not distinguishable in the original frames.

Figure 7.7: burst super-resolution on real raw bursts exploiting our alignment method. Top:
low-resolution crops. Bottom: super-resolution exploiting our alignment method. Best seen
by zooming aggressively on a computer screen.

7.4.6 Impact of a Good Depth Initialization

We show in Figure 7.8 the impact of the initialization of the depth-map to the per-
formance of our method. We gradually increase the variance of a Gaussian random
noise added to the 16× 16 initialization depth map and evaluate the performance
of our algorithm on our synthetic dataset with various depth, pose, and alignment
metrics. This experiment demonstrates that our method is robust to noise on the
initialization depth map. Or model only requires a coarse estimate to converge to
the right solution.

s=10 s=5 s=1 s=0.5 s=0.1s=0.05
0.00

0.01

0.02

0.03
Pose ATE (m)

s=10 s=5 s=1 s=0.5 s=0.1s=0.05
0.0

0.1

0.2

0.3

0.4
Pose biinvrot (deg)

s=10 s=5 s=1 s=0.5 s=0.1s=0.05
0.0

0.1

0.2

0.3

Depth abs relative

s=10 s=5 s=1 s=0.5 s=0.1s=0.05
0

1

2

3
Flow EPE

Figure 7.8: Figure: Noise on the initialization depth map. Our method is robust to noise, the
performance begins to degrade when the noise on the depth map is greater than 1 meter.

7.a Appendix

7.a.1 Closed Form Jacobian for Gauss-Newton Step

From Eq. (7.1), we recall that the residual for which we have to compute the Jaco-
bian is:

ri,k,u = I0(u)− Ik(Ĥi,k(u)), (7.4)

using the expression of the homography matrix in (7.2), and dropping the index i
k and u for convenience, the jacobian Jrk

have rows of the form ∇ξ φ> with noting
[R, t] = Exp(ξ) and:

φ(ξ) = I(Θ((R + tn>)ū)) (7.5)

= I
(

Θ
(

R
1

n>ū
ū + t

))
, (7.6)
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where Θ(x, y, z) = [x/z, y/z]>. So if we note X = 1
n>ū ū in R3 and ΛX : SE(3)→ R3

the action on X that takes an element of [R, t] of SE(3) and gives its action on X:
ΛX(R, t) = RX + t we can simplify to a chain rule calculation:

φ = I ◦Θ ◦ΛX ◦ Exp (7.7)

∇φ> = ∇I> JΘ JΛX
JExp . (7.8)

Note that ΛX takes input on a group, and Exp has an output on the same group.
However, as described in [283], using the so-called left jacobian suffices. ∇I is the
spatial gradient of the image I calculated using a convolution and a Sobel kernel
and evaluated in a coordinate using bilinear interpolation. The individual Jacobians
are reported in Table 7.5.

Domains Function Jacobian

R3 → R2 Θ(x, y, z) = [x/z, y/z]> JΘ = 1
z [I2| −Θ(x, y, z)]

SE(3)→ R3 ΛX(R, t) = RX + t JΛX
= [R| − R[X]×]

R6 → SE(3) Exp(ξ) as eq (172) in [283] JExp as eq (179a) in [283]

Table 7.5: Closed form of functions needed to calculate the residual jacobian.

7.a.2 Determinant Regularization

The idea behind this regularization is that when the gradient is small, we will fa-
vor the direction of descent for the structure that deforms the current flow the
least. To do this, we look at the effect of the flow on the center of the patches
regularly distributed on the Gv grid. We note i = ix, iy the i elements of the
grid Gv with ix = 1..Wv and iy = 1..Hv. We, therefore, note (uix ,iy) the point
in the corresponding image plane, and we suppose that the coordinates of uix ,iy
are normalized and evolve in a range [−1, 1]. A mesh constituted by the points
(uix ,iy , uix+1,iy , uix+1,iy+1, uix ,iy+1) thus has a normalized area of 4/(HW). We com-
pare independently for each view k and each grid mesh element, the normalized
area of the mesh after application of the local homographic flow and the constant
area noted u′ix ,iy ,k = Ĥ(ix ,iy),k(uix ,iy). We thus have the penalization:

ψ =
K

∑
k=1

W−1

∑
ix=1

H−1

∑
iy=1

∣∣∣∣HW
8
Aix ,iy − 1

∣∣∣∣ (7.9)

Aix ,iy =det(u′ix+1,iy ,k − u′ix ,iy ,k, u′ix ,iy+1,k − u′ix ,iy ,k) (7.10)

+ det(u′ix ,iy+1,k − u′ix+1,iy+1,k, u′ix+1,iy ,k − u′ix+1,iy+1,k), (7.11)

where Aix ,iy is the double of the area of the parallelogram

(u′ix ,iy ,k, u′ix+1,iy ,k, u′ix+1,iy+1,k, u′ix ,iy+1,k)

using determinant on the two halves.
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7.a.3 Plane Parametrization

We start from the basic plan equation ax + by + cz = 1, using the pinhole model,
we have x = zu and y = zv and the rewriting:

1
z
= au + bv + c. (7.12)

Then depending on where the patch is (a choice of u and v), a and b must adapt to
have a constant disparity. So we center around the patch center u0, v0 and write:

1
z
= a(u− u0) + b(v− v0) + (c + au0 + bv0). (7.13)

Then while (u− u0) remains of the same magnitude for every patch, the associated
variation z− z0 does not. So we factorize to have:

1
z
= (c + au0 + bv0)

(
a

c + au0 + bv0
(u− u0) +

a
c + au0 + bv0

(v− v0) + 1
)

. (7.14)

Then we can make the proposed change of variable: γi = ci + [ai, bi]
>ui, αi =

ai/γi, βi = bi/γi and recover en factorized and center model 1
z = γ(α(u − u0) +

β(v − v0) + 1) for the local homographies. This variable change allows the opti-
mization variables α, β, γ to be more coherent on the grid and enhance the opti-
mization behavior as seen in the ablation study 7.a.5.1.

7.a.4 Fixed Point Algorithm for Reverse Warpping

We must construct a dense and pixel-wise flow to use the estimated scene structure
in a downstream task. To do this, we can extract a disparity map (γ

(0)
i )i∈G from the

estimated map of ni planes by noting that:

γ
(0)
i =

1
zi

= nT
i ūi (7.15)

We can use this disparity map to construct the following pixel-wise motion field as
well as the disparity of the point re-projected in the second view with the formulas:

u′p
(

ui, γ
(0)
i , Rk, tk

)
= Θ

(
Rkūi + γ

(0)
i tk

)
(7.16)

γ′p
(

ui, γ
(0)
i , Rk, tk

)
= γ

(0)
i Ω

(
Rkūi + γ

(0)
i tk

)
, (7.17)

where Ω(x, y, z) = 1
z .

We use the motion field to warp the images Ik into I(0)k images in the (C0) camera
plane as is necessary in denoising 7.4 for example. This warp is a backward-warp
and reads:

I(0)k (ui) = Ik(u
′
p(ui, γ

(0)
i , Rk, tk)). (7.18)

However, for other tasks such as the super-resolution 7.4, it is necessary to be able
to have the inverse warp, i.e., to warp the image I0 into images I(k)0 in the different
cameras (Ck). We could do the warp using the same motion field and a forward-
warp, but as noted in [293], the forward-warp is unstable and can create artifacts in
the reconstructed image. Moreover, to calculate the analytical gradient of the super-
resolution loss, it is necessary to have access to the inverse motion field, which maps
a regular grid in camera (Ck) to a grid in camera (C0).
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Therefore, we propose a fixed point algorithm to estimate the inverse motion field
and then obtain the I(k)0 using a backward warp. Using the inversion in SE(3), we
have that the extrinsic parameters of the camera (C0) relative to camera (Ck) are
R>k ,−R>k tk. Thus it is sufficient to obtain a disparity map (γ

(k)
i )i∈G of the scene for

camera (Ck). One could use the motion field to obtain (γ
(k)
i )i∈G as a forward warp

of (γ(0)
i )i∈G, but again this implies stability problems.

Now, if we assume that we know γ(0) the continuous disparity map in the reference
camera, which we can take as a bilinear interpolation of the discrete map (γ

(0)
i )i∈G

extracted following our algorithm, then for the unoccluded points of a regular grid
(ui)i∈G in the camera (Ck), the discrete disparity map (γ

(k)
i )i∈G verifies the equation

for all i in G and k = 1..K:

u(0)
i = u′p

(
ui, γ

(k)
i , R>k ,−R>k tk

)
(7.19)

ui = u′p
(

u(0)
i , γ(0)(u(0)

i ), Rk, tk

)
, γ

(k)
i = γ′p

(
u(0)

i , γ(0)(u(0)
i ), Rk, tk

)
(7.20)

We can solve this equation using a fixed point algorithm. We initialize γi, 0(k) = γ
(0)
i

then we iterate for m ≥ 0:

u(0)
i,m = u′p

(
ui, γ

(k)
i,m, R>k ,−R>k tk

)
, γ

(k)
i,m = γ′p

(
u(0)

i,m, γ(0)(u(0)
i,m), Rk, tk

)
. (7.21)

and the sequence index by m: ε
(k)
i,m =

∥∥∥u(k)
i − u′p(u

(0)
i,m, γ(u(0)

i,m, Rk, tk, Λ)
∥∥∥ is a conver-

gence criterion for each pixel i in each view k.
The points that do not converge are close to the occlusion boundaries, as explained
in Fig. 7.2.b. By marking these non-converging points, we find partial occlusion
masks. Examples of these masks are available in appendix 7.a.6.1. For the others,
we obtain γ

(k)
i , and we can have the inverse warp with a backward warp:

I(k)0 (ui) = Ik(u
′
p(ui, γ

(k)
i , R>k ,−R>k tk)). (7.22)

7.a.5 Additional Experiments

7.a.5.1 Ablation Study

We make an ablation study to understand the impact of the different choices in our
modeling and algorithm. We compare the global algorithm to an identical algo-
rithm using the same hyperparameters but, respectively, without the exponential
parametrization of the motion, with regularization (total variation and determi-
nant), without the reparametrization of the plane, with patches of size one, i.e., a
pixel-wise loss and without the use of a lower resolution grid for the ni structure
variables.
We report the performance on the pose estimate in Table. 7.6, depth estimate in
Table. 7.8, and flow estimate in Table. 7.7.

7.a.5.2 Comparison with Monocular Method

Monocular depth estimation methods can only estimate depth up to an affine trans-
formation. Therefore, we evaluate them up to an affine correction. It does not make
sense to compare them to the binocular method with linear correction as in Table



CHAPTER 7. DENSE IMAGE REGISTRATION AND 3D RECONSTRUCTION
FROM BURSTS 172

Method Left l2
(m)↓

ATE
(m) ↓

Geom
(m) ↓

Biinvrot l2
(deg) ↓

Dataset Blender1 (small motion)

w/o subgrid 0.0033 0.0029 0.0019 0.0784
with k = 1 0.0028 0.0024 0.0016 0.0698
w/o plan reparametrization 0.015 0.0133 0.0113 0.3333
with regularization 0.0032 0.0028 0.0019 0.0743
w/o exponential parametrization 0.0032 0.0028 0.0019 0.073

Dataset Blender2 (tiny motion)

w/o subgrid 0.0021 0.002 0.0019 0.0322
with k = 1 0.0023 0.0021 0.002 0.0367
w/o plan reparametrization 0.0049 0.0048 0.0046 0.0441
with regularization 0.0021 0.002 0.0018 0.0329
w/o exponential parametrization 0.0021 0.002 0.0018 0.0339

Table 7.6: Pose errors in the ablation study.

Method EPE
↓

RMSE
↓

NPE1
↑

NPE2
↑

NPE3
↑

Blender1 (small motion)

w/o subgrid 0.6207 1.2487 0.8379 0.924 0.9487
with k = 1 0.6327 1.1491 0.8061 0.9192 0.953
w/o plan reparametrization 377.1064 4333.003 0.4215 0.5987 0.6932
with regularization 0.6052 1.2147 0.8386 0.9256 0.9518
w/o exponential parametrization 0.6017 1.2048 0.8392 0.9263 0.9526

Blender2 (tiny)

w/o subgrid 0.2751 0.3347 0.9334 0.9951 0.9999
with k = 1 0.2904 0.3494 0.9299 0.9959 0.9999
w/o plan reparametrization 115.5213 633.4214 0.7204 0.813 0.8333
with regularization 0.2713 0.3287 0.9349 0.9954 0.9999
w/o exponential parametrization 0.2716 0.3292 0.935 0.9954 0.9999

Table 7.7: Optical flow errors ablation study.

Method Abs rel ↓ Sqr rel ↓ RMSE↓ Delta 1↑ Delta 2 ↑ Delta 3 ↑
Blender1 (small motion)

w/o subgrid 0.0969 0.1107 0.6958 0.889 0.9642 0.9895
with k = 1 0.1058 0.1229 0.7508 0.8726 0.9692 0.9931
w/o plan parametrization 0.3687 0.6707 1.6153 0.3357 0.6333 0.8194
with regularization 0.0967 0.1082 0.6905 0.8872 0.966 0.9915
w/o exponential parametrization 0.0953 0.1058 0.6825 0.8893 0.9669 0.9918

Blender2 (tiny motion)

w/o subgrid 0.1817 0.3005 1.3918 0.6707 0.9541 0.9969
with k = 1 0.1787 0.2902 1.3785 0.6735 0.962 0.998
w/o plan parametrization 0.257 0.5266 1.7724 0.5007 0.8882 0.986
with regularization 0.1773 0.2897 1.3744 0.6834 0.9587 0.9975
w/o exponential parametrization 0.1756 0.2862 1.3685 0.6876 0.9596 0.9976

Table 7.8: Depth errors for the ablation study.
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7.4. On the other hand, to compare them to the latter, we must recalculate the er-
ror of each of the methods in Table 7.4 with an affine correction. The results are
reported in Table 7.9.

Method Abs rel ↓ Sqr rel ↓ RMSE↓ Delta 1↑ Delta 2 ↑ Delta 3 ↑
Blender1 (small motion)

Midas [291] 0.1589 1.0747 1.3148 0.8019 0.951 0.9824
RCVD [275] 0.2038 1.0622 1.3888 0.698 0.9191 0.9684
Ours 0.1544 0.2229 0.9258 0.7881 0.9544 0.9911

Blender2 (tiny motion)

Midas [291] 0.0790 0.0786 0.7166 0.9429 0.9929 0.9986
RCVD [275] 0.0971 0.1131 0.8244 0.9149 0.988 0.9973
Ours 0.1763 0.2875 1.3711 0.6857 0.9594 0.9976

Table 7.9: Depth errors metrics on the two proposed synthetic bursts datasets.

7.a.5.3 Additional Details on the Experiments

7.a.5.4 Choosing the Best Reference Frame

The performance of our method can be enhanced by more carefully selecting the
reference frame. To do so, we run our algorithm only on its first scale with different
reference image candidates. We then select the reference image which provided the
lowest optimization error and finish the optimization across all the scales for this
candidate. This approach increases performance on synthetic datasets, as shown in
Tables 7.12, 7.10 and 7.11.

Method Left l2
(m)↓

ATE
(m) ↓

Geom
(m) ↓

Biinvrot l2
(deg) ↓

Dataset Blender1 (small motion)

Ours 0.0037 0.0032 0.0022 0.0921
Auto ref frame 0.0032 0.0027 0.0020 0.0795

Dataset Blender2 (tiny motion)

Ours 0.0020 0.0020 0.0018 0.0275
Auto ref frame 0.0020 0.0795 0.0020 0.0019

Table 7.10: Pose errors in the ablation study.

Method EPE
↓

RMSE
↓

NPE1
↑

NPE2
↑

NPE3
↑

Dataset Blender1 (small motion)

Ours 0.6966 1.341 0.8166 0.9095 0.9386
Auto ref frame 0.5449 1.0444 0.8548 0.9324 0.9552

Dataset Blender2 (tiny motion)

Ours 0.2586 0.3106 0.9374 0.9963 1.0000
Auto ref frame 0.2572 0.306 0.9331 0.9959 1.0000

Table 7.11: Optical flow errors ablation study.
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Method Abs rel ↓ Sqr rel ↓ RMSE↓ Delta 1↑ Delta 2 ↑ Delta 3 ↑
Blender1 (small motion)

Ours 0.1954 0.3168 1.0253 0.7231 0.891 0.9811
Auto ref frame 0.2078 0.3500 1.0844 0.7231 0.8795 0.9804

Blender2 (tiny motion)

Ours 0.2376 0.5626 1.8198 0.5997 0.8866 0.9853
Auto ref frame 0.2577 0.652 1.9556 0.5643 0.8535 0.9762

Table 7.12: Depth errors for the ablation study.

7.a.6 Additional Visual Results

7.a.6.1 Estimated Occlusion Mask

We use the previous algorithm on the depth map obtained at the optimization’s last
step and note the points for which the fixed point algorithm does not converge.
We use a threshold and a maximum number of iterations to construct the non-
convergent set. This set constitutes a partial occlusion mask. It can be used in down-
stream tasks to avoid aggregating erroneous information because it is occluded. Fig.
7.9 shows examples of masks on synthetic data.

7.a.6.2 Depthmaps

We provide additonal examples of depth maps from both synthetic bursts (Fig. 7.10)
and real bursts (Fig. 7.11). All disparity maps were aligned to the groundtruth with
an affine transform by using the least square criterion of [291].
For a fair comparison, we also show the results of DfUSMC without their additional
depth map filtering, which is essential to obtain a visually appealing depth map.
However, this step introduces a stratification of the depth map, which is not present
with our method.

7.a.6.3 Point Clouds

We provide an example of a point cloud generated with our method and
DfUSMC[272] in Fig. 7.12. With the focal length known, the point clouds were
obtained by a 3D projection of the depth map. For example, we can see that our
method preserves the geometry of the room since the floor is almost perpendicular
to the wall. DfUSMC[272] does not perform as well in this regard, in addition to
the previously mentioned stratification of the depth map.
In our experiments, whose results are reported in Table 7.1, Table 7.3, Table 7.4, we
evaluated the performance of the Saop method [271] by calculating the average re-
sults across all scenes where Saop successfully converged. On the blender 1 dataset,
we excluded one scene where Saop did not converge. Excluding this scene for Saop
does not change the ranking of the methods and the conclusion of our experiments.

7.a.6.4 Visual Inspection of the Registration of Real Frames

Fig. 7.13 visually demonstrates the alignment quality achieved with our method
on a real burst. To assess the alignment quality, we generate images by overlaying
the green and blue channels of the warped source images onto the red channel of
the target image, following a similar approach as [270] In this example, we observe
that the majority of the frames exhibit a good alignment, while a few frames (5 out
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Figure 7.9: Partial occlusion mask obtained using the fixed point algorithm for four example
of the blender 2 dataset.
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Learning based Optimization based

Ref. image Groundtruth Midas [291] RCVD[275] Saop [271] DfUSMC [272] DfUSMC
no filt. Ours Ours + reg.

Figure 7.10: Depth estimation from synthetic bursts (Blender 2 dataset).

Ref. image Midas [291] RCVD[275] DfUSMC [272] Ours

Figure 7.11: Depth estimation from real bursts.

of 15) show inadequate alignment particularly in certain regions of the foreground
(see for example the books or the plant).

7.a.6.5 Pose Estimation Visualization

To visualize the positions the algorithm approximates, we can look at the translation
part of the positions. Because our images come from a burst, we use the temporal
coherence of the series of pictures and can trace the trajectory of the camera center
during the burst. After rescaling, we compare the trajectory approximated by the
algorithm to the trajectory used to create the burst in Blender. Fig. 7.14 shows
examples of trajectories for different images of the Blender 2 dataset during the last
three stages.
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DfUSMC [272] Ours

Figure 7.12: Point cloud estimation from real bursts.

Figure 7.13: Qualitative alignment results of our method on a real burst. Images are gener-
ated by superimposing the warped source images on the target image.
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Figure 7.14: Trajectory at different scales of the coarse to fine approach for all the scenes
shown in Fig. 7.9 and Fig. 7.10.



Chapter 8

Conclusion, Industrialization, and
Perspectives

Chapter abstract:
This chapter is the conclusion of this thesis. It begins with a summary of our
contributions in Section 8.1. In section 8.2, we present the limitations we ob-
served for each method we experimented. The super-resolution algorithms we
designed led to a startup aiming to provide software solutions for enhancing
image quality. Moving on the section 8.4, we discuss from a technical stand-
point the new challenges we had to face for the industrialization of the al-
gorithms, Finally, in Section 8.5, we explore a handful of promising research
directions that we believe would serve as exciting extensions of this thesis.
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8.1 Summary of this Thesis

This thesis explores hybrid methods for inverse problems, focusing on their practi-
cal implementation in burst photography for real-world applications. We presented
in the first part the physics of imaging systems and leveraged its knowledge to
enhance learning-based methods for image restoration. We used, for instance, the
knowledge of the image formation model, the sensor’s noise model and the cam-
era’s ISP. In the first part, we studied learned inverse problems methods for single-
image restoration based on unrolling. We proposed a trainable inverse problem reg-
ularized with a non-local sparse image prior, which uses a differentiable relaxation
of the group lasso solver. Then, a framework providing differentiable relaxations
of convex non-smooth optimization solvers for classic image priors is studied. The
models proposed in this first part demonstrate comparable performance to larger
neural networks with fewer parameters and less training data. They also have in-
creased interpretability and faster training times. The second part of the thesis
delves into integrating hybrid methods for multi-frame image restoration for real-
world scenarios. The design of plug-and-play algorithms for burst photography is
explored, with efforts directed toward practical implementation for mobile devices.
Finally, the last part of this thesis tackles image registration for image bursts. We
propose a new dense multi-frame registration algorithm enabling 3-D scene recon-
struction from image bursts with tiny baselines.

8.2 Limitations

8.2.1 Data Quality

With the exception of the final chapter, all the methods proposed in this study are
data-driven. While hybrid approaches demonstrate increased stability when ap-
plied to real-world data, our observations still highlight their dependency on the
quality of the input data. Consequently, the accuracy of simulated data consistently
emerges as a bottleneck, a challenge we particularly encountered during the indus-
trialization phase. When implementing these methods on new camera systems, a
significant portion of our efforts is directed toward refining data simulation for the
specific imaging devices.
The estimation of required dataset quality, encompassing factors like accuracy, di-
versity, and dataset size, for tasks involving image restoration remains an under-
explored area. And so far, we have limited solutions to offer in response to this
issue.

Adaptability to New Hardware. The models we developed are tailored to specific
imaging systems. In theory, a comprehensive process involving camera calibration
to infer the camera’s parameters and subsequent model retraining is essential to
address camera defects. Nevertheless, our practical observations, as emphasized in
the concluding remarks of Chapter 5, show this is not a major limitation in practice.
The same model gives satisfactory results on a broad range of cameras. This out-
come is unsurprising, given that our approach primarily targets the enhancement
of the camera’s sensor. While sensors exhibit a narrower range of limitations, opti-
cal limitations manifest more diversely. Therefore, we anticipate more complexities
when designing models that address optical limitations.
However, it is still important to acknowledge that our experimentation has not
covered scenarios involving different sensor types, such as CCD sensors. We have
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also not delved into the effects of a rolling shutter mechanism.

8.2.2 Learned Inverse Problems

GPU memory footprint during the training phase. Memory consumption is the
main limitation of the LIP methods proposed in this thesis, which rely on unrolled
optimization. For unrolled methods, the intermediate results computed during
the forward pass of the iterative solver must be stored in memory to accumulate
gradients during the backward pass. To compute the full gradient, see Chapter 2
for more details. This can result in memory issues on the GPU if the number of
iterations is too large. In our experiments, we typically required top-end GPUs (at
the time of this Thesis) with approximately 24Gb of memory. See Chapters 3 and 4
for more details on GPUs used for our experiments. Note that solutions exist to
address this limitation, for example, truncated backpropagation through time [70].
Another option discussed in the Background Chapter 2 is to compute the exact
hypergradient leveraging the implicit function theorem.

FLOPS. Even though unrolled methods result in compact models with few train-
able parameters, it does not always come with a reduced number of operations
performed (FLOPS) compared with traditional one-pass neural networks. Indeed,
due to the iterative nature of the algorithm during the inference procedure, the
number of operations can stay important, especially for a large number of itera-
tions. Consequently, studied hybrid models are not always superior to their neural
network counterparts regarding the number of operations. Note that the number
of operations generally correlates with the algorithm’s latency, even though latency
depends on many factors, including implementation and hardware.

Training instabilities. We also observed in our experiments that unrolled models
may diverge during the training phase. As a rule of thumb, we observed that
more sophisticated iterative solvers with automatic stepsizes (conjugate gradient,
etc.) tend to exhibit more instabilities during the training phase than basic solvers
such as gradient descent or ISTA. It is often easier to differentiate through simple
solvers than more elaborate ones. However, we do not have theoretical insights for
explaining this phenomenon.

8.2.3 Burst Methods

Optics limited cameras. In contrast with sensor-limited devices, restoring images
from cameras with optical limitations poses a persistent challenge. We observed
limited gains on cameras limited by the optics, such as telelens cameras on smart-
phones. The lens response of such a device is much more complex than the sensor
to model; therefore, simulating accurate data for training is a challenge.

Registration. We also faced difficulties in aligning real-world frames. Real images
involve complex motions that are difficult to model with simple parameterizations
such as rigid motions. Rigid motions fail to model motions induced by parallax ef-
fects and/or motions within the scene. It also fails to capture nonrigid motions. The
block parameterizations allow for more flexibility but trade with instability issues
as it requires aligning smaller patches and, therefore, requires fitting transforma-
tions on fewer data points. The Lucas-Kanade algorithm we implemented exhibits
instabilities for surfaces with few textures and tends to produce wrong alignments.
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Finally, the tiles-based motion model fails to capture large motions exceeding block
size.

8.2.4 Multiframe registration

Regarding the work introduced in Chapter 7, we observed, after working with real
bursts, that the registration is subject to a noticeable performance gap between
synthetic and real data. The performances achieved in idealized synthetic scenarios
may not be fully replicated when working with real data. We still do not understand
the reasons for this behavior; some hypotheses and directions of amelioration are
presented in the future work Section 8.5.

8.3 Challenges of the Industrialization

As highlighted in the introduction section, the super-resolution algorithm intro-
duced in this thesis has led to the creation of a startup aiming to provide software
solutions for enhancing image quality in various contexts, including smartphones
and scientific imaging. We confronted several technical challenges to transition
from academic research to a robust industrial product. The difficulties we faced
were three-fold: (1) the management of significantly more complex data; secondly,
(2) the necessity to adapt to new evaluation criteria distinct from our accustomed
standards; (3) and lastly, much more Contrast computational resources.

Data quality variability and heterogeneity. A noticeable shift in emphasis is ob-
served in the context of industrial applications for our algorithm. Here, the priority
rests on stability and robustness—ensuring that the algorithm minimizes artifacts
even in the most challenging scenarios. This stands in contrast to focusing solely
on reconstruction quality under optimal conditions. The less favorable scenarios for
burst super-resolution include bursts characterized by large camera motions, scenes
with limited textures, abundant non-rigid and object motions within the scene, and
pronounced parallax effects from nonplanar scenes. Additionally, the algorithm
must accommodate data from cameras featuring subpar optics, including distor-
tions, optical blurring defects, and/or lens flare. As discussed in this thesis, these
defects are hard to model and correct.

Different evaluation criterions. Secondly, academic research prioritizes quanti-
tative standardized benchmarks, whereas industries place greater significance on
subjective rankings derived from proprietary datasets. As pointed out in the in-
troduction, quantifying image quality is highly intricated to human perception and
remains an open question. To the best of our knowledge, in the industry, perceptual
evaluations made by experts often dictate image rankings. And this is especially
the case in the smartphone industry, where pleasant photographs are paramount.

Embarkability. Lastly, we encountered significant challenges concerning the inte-
gration of mobile devices. Implementing the algorithm on the GPU/DSP of mobile
devices encounters a less mature ecosystem with more prevalent issues. It lacks
the comprehensive documentation found in the well-established PyTorch ecosys-
tem. The table below outlines the disparities observed while transitioning from
academic to industrial evaluations.
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Academia Industry
reconstruction quality robustness

best cases worst cases
quantitative results qualitative results

computational cost

8.4 Example of Add-Ons to the Super-Resolution Algorithm

These emerging challenges prompted us to propose some technical solutions. In
this concluding Section, we succinctly explore a few of these add-ons to the burst
super-resolution method.

8.4.1 Hiearchical Lucas Kanade

scale 1

scale 2

scale 3

Figure 8.1: Hiearchical block affine registration. Registration of a pair of images with coarse-
to-fine alignment. At the coarsest scale, the motion is estimated between Next, we subdivide
the tiles at a finer scale and use the alignment parameters from the ancestor tile from the
coarser scale as an initial guess. The method supports displacements up to 2Nscale pixels.

Registration is a bottleneck for the super-resolution method. We developed im-
proved registration algorithms to handle the limitations of the block-affine model to
handle large displacements and complex motions featuring parallax effects. Instead
of a tile-based registration method, we developed a Hierarchical implementation of
the parametric Lucas Kanade algorithm [73, 72].
We were inspired by the hierarchical alignment proposed in HDR+ paper [80]. The
authors performed a coarse-to-fine alignment on a multiscale pyramid. They pro-
posed a translation tile-based alignment for each pyramid level, using the align-
ments from the coarser scale as an initial guess. The tile density is increased at each
scale to predict a finer motion. Similarly, we developed a Hierarchical implemen-
tation of the parametric Lucas Kanade to handle more complex motions than pure
translations for aligning the tiles. Likewise to [80], we infer tile-based affine motions
at each scale and subdivide into more tiles at the following scale, using the previous
scale’s predicted motion as an initial guess. We are not aware of existing implemen-
tations of a hierarchical version of the parametric Lucas Kanade algorithm in the
literature. The general principle of the algorithm is presented in Figure 8.1.

Results. Aligned patches are warped from the large image, hindering the border
effects we experienced with the first block version. We can align larger motions and
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manage to decrease the tile sizes. Figure 8.2 shows the result of our algorithm on
synthetic data.

Figure 8.2: Alignement on synthetic data with the hierarchical implementation of the Lucas
Kanade. The target image I1is synthetically warped with a rotation centered in the middle of
the image. The algorithm performs registration on 3 scales and successfully aligns each tile
at the finest level. Left: Illustration of each tile and its estimated motion parameters. Right:
Warped templated imageWpI2 that successfully matchs the target image.

8.4.2 Fast Gradient Approximation and Fusing Operators

Numerous avenues have been explored to reduce the memory requirements and
latency of the burst super-resolution technique introduced in [3] for an efficient
implementation on mobile devices. One approach involves optimizing the archi-
tecture of the neural networks, while other enhancements have been made in the
optimization phase itself. The subsequent section outlines some of the optimization
concepts we worked on.
From Chapter 5, recall that the sequence of low resolution frames are obtained
through the linear forward model

yk = DBWpk x + εk for k = 1 · · ·K, (8.1)

where the operator Wpk parameterized by pk warps x to compensate for misalign-
ments between x and yk induced by camera motion between frames, B is a blurring
operator accounting for photons integration over pixels, D downsamples the image
in both the spatial and spectral domains and εk is some additive noise. We rewrite
the formation model

Y = UPx + ε, where UP =

DBWp1
...

DBWpK

, Y=

y1
...

yK

, P =

p1
...

pK

, ε=

ε1
...

εK

. (8.2)

In the method introduced in [3], the super-resolution inverse problem is solved with
half quadratic spliting; and to minimize the data fitting term L(x) = ‖UPx− Y‖2, a
plain gradient descent is used.

Effecient gradient implementation in Pytorch. For better performances, the gra-
dient of the data fitting term is implemented by hand rather than relying on auto
diff. The analytical gradient is given by

∇xL(x) =
K

∑
i=1

U>P
(
UPx− Y

)
, (8.3)
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and can be implemented efficiently with Pytorch operators. Note that we used the
fact that Pytorch provides the adjoint operator for many image processing opera-
tors, including convolutions and warps (gridsample in Pytorch), as Pytorch’s auto
diff engine requires it. The adjoints are not directly available in Pytorch Python
library. Still, they can be linked from the c++ libtorch library with some bindings1.
However, the gradient computation is costly as it requires computing and storing
in memory K high-resolution images Wpi x.

Commuting B and W. As pointed out in [28, 29] under pure translation and arbi-
trary blurring kernel, or rigid motion and radially symmetric blurring kernel, the
operators B and W commute. Leveraging this assumption, we have the following
formation model approximation

Ỹ = VPBx + ε, where VP =

DWp1
...

DWpK

, Ỹ=

 ỹ1
...

ỹK

, (8.4)

where ỹk denotes the approximated low resolution image.

Fusing ops. From the equation 8.4, further optimization is possible by fusing
operations. Indeed, the spatial and spectral downsampling and the warping can
be fused in a single operation VP performing proper resampling straight on low-
resolution grids and avoiding the cost of computing and storing K high-resolution
images. Similar optimization can be achieved for the adjoint operator V>P . There-
fore, it is possible to approximate the gradient with the expression

∇xL(x) ≈ B>V>P
(

VPBx− Y
)

(8.5)

Benchmarks. We show the profiling of the two forward models, using the Py-
torch integrated Profiler, performed on the CPU. Note that the adjoint operations
to compute the gradient have the same order of complexity. We also computed the
discrepancy between the inferred lr frames with the approximated forward model
and the true forward model, i.e., ‖Ỹ− Y‖2

2, reported in terms of mean square error
(MSE).
The experiment was performed with an hr gray image x ∈ R400×400, applying a
downscaling factor of ×1/2, generating 10 low resolution observations frames yi ∈
R200×200. The motions randomly sampled rigid translations with translations in the
range [−10px, 10px] and rotations in the range [−1◦, 1◦]. We reported millisecond
latency (ms) and memory usage in megabytes (Mb).

Forward model Ux VBx
Speed (CPU) 41.337 ms 3.981 ms
Memory 24.41 Mb 2.13 Mb
MSE 0 1.06 ·10−2

Significant gains are obtained on the CPU. This also improves performance on GPU.
Further optimization is also possible by implementing a dedicated cpp kernel to
avoid computing some values twice (especially some quantities for the reverse and
forward warping).

1See for more details pytorch.org/tutorials/advanced/torch_script_custom_ops.html#

building-the-custom-operator

pytorch.org/tutorials/advanced/torch_script_custom_ops.html#building-the-custom-operator
pytorch.org/tutorials/advanced/torch_script_custom_ops.html#building-the-custom-operator
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8.5 Future Work

In conclusion, the last chapter of this thesis presents exciting and promising direc-
tions for future research that we are eager to explore.

8.5.1 Joint Optical Deconvolution and Super-Resolution

Throughout our research, we have employed a standard linear camera model to de-
scribe the imaging system utilized in [28, 29] Notably, our study deliberately omit-
ted the incorporation of optical components within the degradation model. Our
analysis solely encompassed the blurring effects of pixel spatial integration, mod-
eled with pixel binning. Our super-resolution work focused on sensor-constrained
devices with highly aliased frames.

Spatially varying point spread functions. An exciting research topic for further
investigation lies in the integration of optical modeling, aimed at exploring potential
enhancements in instances of moderate blurs in the imaging system. Modeling of
blur induced by the optics would be needed to do so. A first step toward that goal
would be to model diffraction and lens aberrations with spatially varying point
spread functions (PSFs). That spatially varying PSF could be calibrated for several
distances, leveraging prior works. Alternatively, another research direction would
be to jointly estimate the blur parameters of the imaging systems.

Improved solver for deconvolution problems. We focus on the case of sensor-
limited cameras. In that setting, gradient descent has proven sufficient in terms of
performance. However, a tailored inverse solver would be needed for blur with a
larger PSF (i.e.) conjugate gradient descent or resolution in the Fourier domain.

Improved camera model. It would also be relevant to use work done in 7 to jointly
estimate high-resolution images and scene structure. This way, it would be possible
to use a refined camera model taking into account the structure of the scene when
forming images (taking into account defocus blur or edge effects).

8.5.2 Ray-Tracing Based Data Simulations

It has been widely acknowledged that the realism of the training data was a major
criterion for the performance of models based on deep learning for image restora-
tion. However, we recognized that the quality of simulated data plays a crucial
role. To further improve our approach, we propose exploring more accurate op-
tics modeling. We saw in the background section that PSF models are limited
and are far from accounting for all physical phenomena. A more effective way
to simulate realistic data would be to leverage ray tracing. Ray tracing-based sim-
ulations and compound lens simulations have the potential to improve the quality
of noisy/clean image pairs significantly. This way, we could generate more realistic
low-resolution/high-resolution data pairs useful for training imaging devices. De-
pending on the scene structure and lighting, we could model complex phenomena
such as defocus blurs. It would also be very relevant to study how to estimate the
needed dataset quality in terms of accuracy, diversity, and size for image restoration
tasks.
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8.5.3 Differentiable Camera Model

A differentiable camera model considers the scene’s structure for forming an image
on the sensor’s plane. This way, complex optic effects such as defocus blur can
be rendered. This paves the way for complex image reconstruction from scenes
shot with different settings, including focus plane and position. Complex tasks like
focus stacking can be performed.

8.5.4 Diffusion-Based Priors on Image and Formation Model

Image diffusion-based priors. The diffusion prior has demonstrated impressive
results in image restoration. Its ability to produce visually appealing images with
sharp details, especially in challenging scenarios with high-resolution factors, holds
great promise. Integrating diffusion models into the Plug-and-Play framework as
alternative denoisers can be a fruitful exploration avenue. More generally, combin-
ing PnP/deep unfolding with diffusion-based image priors.

Parametric formation model. A research direction that has been neglected is the
optimization of camera parameters and extrinsic parameters/scene structure jointly.
We perform camera calibration and motion field estimation and then solve an in-
verse problem to estimate a clean image, with the exception of [3], where we jointly
optimize motion and image reconstructions. An exciting research direction would
be to simulate realistic camera models and form a prior on camera models and
motion fields.

Extrinsic parameters and scene’s structure. We are also interested in exploring
the application of diffusion models to learn priors on camera forward operators,
such as depth-varying PSFs and geometrical deformations. Finally, a similar prior
could be used to model motion fields induced by camera shakes.

8.5.5 Implementation on GPU/DSP for Mobile Devices

While our current implementation successfully operates on the CPU within smart-
phones, we recognize the compelling need to extend its capabilities to GPU/DSP
platforms because (1) CPU is devoted to more priority tasks on smartphones and
(2) it is expected to improve latency significantly. The challenge entails the task of
aligning the algorithmic architecture with the specific demands of these hardware
configurations, thereby harnessing the complete computational potential of each
platform effectively2. Substantial research has been dedicated to tailoring neural
network architectures for deployment on embedded devices. However, the domain
of optimized architectures for handling extensive image processing tasks on em-
bedded platforms remains relatively unexplored, particularly with large images.
Exploration to Halide3,4 is also promising.

8.5.6 Improved Multi-Frame Registration

Finally, for our last work dealing with multi-frame registration and 3D reconstruc-
tions, the research directions include (1) incorporating a geometrical distortion

2For additional insights, refer to https://lnstadrum.github.io/mva/
3See halide-lang.org/
4See blog.minhazav.dev/

https://lnstadrum.github.io/mva/
halide-lang.org/
https://blog.minhazav.dev/fast-and-maintanable-image-processing-in-android-with-halide-part-3/
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model induced by the optics to bridge the gap between simulated and real-world
data. (2) employing a better initialization strategy for depth maps instead of rely-
ing on smartphones’ depth. For instance, one could perform initialization with a
sparse structure from motion method such as the one proposed in the DFUMSC
algorithm [272]. Finally, (3) a faster implementation using closed-formed gradient
rather than auto diff for normal map optimization could also drastically improve
speed.
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Appendix A

Multi Frames Registration Algorithm
for HDR Images

Problem setting. We focus on multi-frame registration in the case of frames with
heterogeneous content. This can be, for instance, a set of images with bracketed
exposures. In that case, the saturated regions and the SNR vary for each frame.
This can also be the case for frames shot with varying plane, in the case of focus
stacking to reconsruct images with extended depth-of-field.

Method. We propose to fit of a global transformation between the frames by uti-
lizing a collection of pairwise affine transformations that have been individually
estimated. These transformations are represented as edges of a graph where each
node is associated with a frame. Note that for bursts with heterogeneous content,
we only sample the frames with the nearest settings. The idea being that they have
the maximum overlap of content and the matching is then simplified. For the case
of a burst with bracketed exposures, this would imply to only align frames with
similar exposures and avoid matching of the darkest frame with the lighter frame.
Examples of such sampling graphs are shown in Figure A.1.

Optimization problem. Let us consider a set of affine transformations Tij for
(i, j) ∈ E. We want to find the transformationsHj, Li, for i = 1, · · · , n, to fit ap-
proximately each Tij and that HiLi ≈ I. If we assume that (i, i) ∈ E for all nodes
i,we are looking for transformations Hi and Li for i = 1, . . . , n that minimizes

min
Hi ,Li

∑
(i,j)∈E

wij

2
‖Tij − HjLi‖,

where wij = 1 if i 6= j and γ > 1 otherwise.

Solver. We minimize with respect to each transformation H and L with block
coordinate descent by minimizing a collection of 2× 2 linear systems. Note that we
increase the value of γ along the iterations.

Coarse-to-fine. We integrate this filtering on the multi-scale Lucas-Kanade algo-
rithm. After performing optimization of motion parameters for each scale, we per-
form a filtering step. Note that it is possible to use different edge sampling at each

190
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Figure A.1: Differnent transformations graphs, each node represents a frame of the burst.
Each edge represents an estimated transformation Tij. Left: sampling adjacent frames in the
burst. Middle: sampling 2-nearest neighbors. Sampling random edges in the case of frames
with homogeneous content.

Procedure 5 Coarse-to-fine transformation filtering

Input: I1, · · · , IN ∈ Rn, Nscales, {Es}s∈[1,Nscales]

H0
i ← I, for i = 1, · · · , n

for s in [1, Nscales] do
Ts

i,j ← ParametricLucasKanade
(
Ii, Ij, (Hs

i Hs
j )
)

for(i, j) ∈ Es

{Hs
i }s∈[1,N] ← Filtering({Ts

i,j for(i, j) ∈ Es})
end for
return {Hs

i }s∈[1,N]

scale of the pyramid. As the first step of the pyramid is less costly in terms of opti-
mization, we sample the set of edges more densely at the top of the pyramid. The
procedure is summarized in Algorithm 5.

Experiments. We show in Figure A.2 the results of our algorithm on synthetic
data. We generated warps of an image with random motions. Warped images are
corrupted with some additive noise of variance σ = 25. We then sample a ran-
dom graph of edges. We sample 25% of all edges. We then run our algorithm
by performing optimization across four scales, with a filtering step at each scale.
Figure A shows results of our experiments in terms of 4-corners geometric errors
calculated as 1

4 ∑4
i=1 ‖x

gt
i − xi

∥∥
2, where xi denotes the corner coordinates in the im-

age plane of the estimated geometric transformation, while xgt denotes coordinates
of the ground truth transformation. Figure A.2 shows results of our algorithm on
synthetic data by sampling only nearest neighbors.
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Figure A.2: Mutli frame image registration. Left: Geometric error on the sampled edges.
Negative values account for unsampled edges. Middle: Pairwise geometric error on the
burst. Our method successfully eliminates outliers and finds transformation parameters for
unsampled edges. Right: Geometric model fitting error.

Figure A.3: Mutli frame image registration. In this example, only the 4 nearest frames are
samples. Left: Geometric error on the sampled edges. Middle: Pairwise geometric error on
the burst. The method aligns frames that were not aligned directly. Right: Geometric model
fitting error.
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[138] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization al-
gorithms I: Fundamentals. Springer science & business media, 2013, vol. 305.

[139] Y.-L. Yu, “Better approximation and faster algorithm using the proximal av-
erage,” in Adv. in Neural Information Processing Systems (NIPS), 2013.

[140] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang, “Coupled dictionary train-
ing for image super-resolution,” IEEE transactions on image processing, vol. 21,
no. 8, pp. 3467–3478, 2012.

[141] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C.
Huang, and P. H. Torr, “Conditional random fields as recurrent neural net-
works,” in Proc. Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

[142] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adver-
sarial networks,” in Proc. International Conference on Learning Representations
(ICLR), 2017.

[143] D. Belanger, B. Yang, and A. McCallum, “End-to-end learning for struc-
tured prediction energy networks,” in Proc. International Conference on Ma-
chine Learning (ICML), 2017.

[144] D. Maclaurin, D. Duvenaud, and R. Adams, “Gradient-based hyperparame-
ter optimization through reversible learning,” in Proc. International Conference
on Machine Learning (ICML), 2015.

[145] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.
Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M.
Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning library,” in
Adv. in Neural Information Processing Systems (NeurIPS), 2019.

[146] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,”
in Proc. International Conference on Computer Vision (ICCV), 1998.

[147] G. Gilboa and S. Osher, “Nonlocal operators with applications to image pro-
cessing,” Multiscale Modeling & Simulation, vol. 7, no. 3, pp. 1005–1028, 2009.

[148] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges
in super-resolution,” International Journal of Imaging Systems and Technology,
vol. 14, no. 2, pp. 47–57, 2004.

[149] B. Turlach, W. Venables, and S. Wright, “Simultaneous variable selection,”
Technometrics, vol. 47, no. 3, p. 349, 2005.

[150] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numer-
ical methods. Prentice hall Englewood Cliffs, NJ, 1989.

[151] F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities and com-
plementarity problems. Springer Science & Business Media, 2007.



BIBLIOGRAPHY 202

[152] A. Juditsky, A. Nemirovski, and C. Tauvel, “Solving variational inequali-
ties with stochastic mirror-prox algorithm,” Stochastic Systems, vol. 1, no. 1,
pp. 17–58, 2011.

[153] P. Mertikopoulos, B. Lecouat, H. Zenati, C.-S. Foo, V. Chandrasekhar, and G.
Piliouras, “Optimistic mirror descent in saddle-point problems: Going the
extra (gradient) mile,” in Proc. International Conference on Learning Representa-
tions (ICLR), 2018.

[154] G. Korpelevich, “The extragradient method for finding saddle points and
other problems,” Matecon, vol. 12, pp. 747–756, 1976.
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ABSTRACT 
This thesis explores hybrid methods for inverse problems, focusing on their practical implementation in 
burst photography for real-world applications. It is divided into two main parts.  
The first part is dedicated to studying hybrid methods for single-image restoration applications, providing 
several methodological tools. Notably, a novel learned inverse problem regularized with a non-local sparse 
image prior is proposed, leveraging a  differentiable relaxation of the group lasso. Then, a framework 
providing differentiable relaxations of convex non-smooth optimization solvers for classic image priors is 
studied. These models demonstrate comparable performance to larger neural networks but with significantly 
fewer parameters, increased interpretability, faster training times, and a smaller amount of training data.  
The second part of the thesis delves into integrating machine learning into multi-frame image restoration 
techniques for real-world scenarios like burst super-resolution and HDR reconstruction. The design of plug-
and-play (PnP) algorithms for burst photography is explored, with efforts directed toward practical 
implementation and memory optimization for mobile devices. Throughout our investigation, we have 
consistently identified registration quality as a prominent bottleneck.  To effectively tackle this challenge, we 
propose a novel dense multi-frame registration algorithm, also enabling 3-D scene reconstruction from 
image bursts with tiny baselines.  

MOTS CLÉS 

Traitement image, problèmes inverses, apprentissage, super-résolution, imagerie haute 
dynamique, reconstruction 3D.

RÉSUMÉ 
Cette thèse explore les méthodes hybrides pour les problèmes inverses, en se concentrant sur leur mise en 
œuvre pratique pour la photographie en rafale. Elle est divisée en deux parties principales. 
La première partie est consacrée à l'étude de méthodes hybrides pour des applications de restauration 
d'images, en fournissant plusieurs outils méthodologiques. Notamment, un nouveau problème inverse 
appris régularisé avec un prior parcimonieux non locale est proposé, tirant parti d'une relaxation 
différentiable d’un optimiser du problème d’optimisation group lasso. Ensuite, un cadre fournissant des 
relaxations différentiables de solveurs d'optimisation convexes non lisses pour des priors d'images est 
étudié. Ces modèles présentent des performances comparables à celles de réseaux de neurones état de 
l’art plus grands, mais avec beaucoup moins de paramètres, une interprétabilité accrue, des durées 
d’entraînement plus courts et une plus petite quantité de données d’apprentissage. 
La deuxième partie de la thèse se penche sur l'intégration de l'apprentissage automatique pour les 
techniques de restauration d'images multi-images, pour des applications sur des images réelles, pour des 
problèmes  comme la super-résolution et la reconstruction HDR. La conception d'algorithmes plug-and-play 
(PnP) pour la photographie en rafale est explorée, avec des efforts dirigés vers la mise en œuvre pratique 
et l'optimisation de la mémoire pour une implémentation sur appareil mobile. Au cours de notre étude, la 
qualité de l’alignement des images a été identifié comme un élément bloquant. Pour contourner ce 
problème, nous proposons un nouvel algorithme de recalage multi-images dense, permettant également la 
reconstruction de scènes 3D à partir de rafales d'images avec de petits déplacements.

KEYWORDS 

Image processing, inverse problems, machine learning, super-resolution, high-dynamic 
range, 3D reconstruction.
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